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Preface

In 1982 the first edition of Hepatology: A Textbook of Liver Disease 
was published. The book was based on pathophysiologic princi-
ples in the belief that these “principles form the basis for interpret-
ing concepts about disease and for evaluating the validity of 
research.” The first 12 chapters focused on normal hepatic func-
tion. The next 10 chapters focused on alterations of normal func-
tion leading to clinical illnesses, such as hepatic encephalopathy, 
and the last 24 chapters focused on specific disease states. There 
were only two chapters on viral hepatitis: one on the biology of 
hepatitis viruses and the second on clinical features of viral hepa-
titis. A single chapter on liver transplantation was included in the 
first edition. Over the next several decades, the book has changed 
dramatically, largely as a reflection of the tremendous progress that 
has been achieved in the field of hepatology.

As in the last edition, the seventh edition focuses more on 
abnormal, rather than normal, physiology. We hope that this new 
edition of Zakim and Boyer’s Hepatology: A Textbook of Liver 
Disease will serve practicing hepatologists and gastroenterologists; 
general physicians, such as internists and general practitioners; 
and basic scientists who want to know more about the clinical 
spectrum, therapeutic approaches, and unmet needs of the dis-
eases they investigate and treat.

The seventh edition is organized into 11 sections and addresses 
basics of liver function, management and assessment of liver 
disease, consequences of chronic liver disease, specific liver dis-
eases, infections, immune diseases, vascular diseases, tumors, 
transplantation, pediatric and inherited liver diseases, and other 
conditions that affect the liver (e.g., pregnancy). As in the past, 
we invited new authors to write approximately one third of the 
chapters to provide fresh perspectives on subjects that appeared 
in previous editions.

To keep the book at a reasonable size and reduce cost, cited 
references are available on Elsevier’s Expert Consult website, 
which will keep the tradition of the book being well referenced 
without being too large. The format that was used in the previous 
edition, including the placement of color photomicrographs and 
photos within each chapter, is used again here, and the art program 
has been thoroughly updated.

Hepatology, like medicine in general and infectious diseases in 
particular, does not respect any border. Liver diseases are a signifi-
cant global health burden. Over the past 50 years, the discipline 
of hepatology has provided examples of discoveries in basic science 
that are immediately transformed into novel diagnostic proce-
dures, molecular-based therapies, antitoxins, and vaccines. The 
discovery of the five major hepatotropic viruses is an example of 
success for translational medicine. Effective treatment for acet-
aminophen overdose has been developed from basic studies of 
drug metabolism and toxicity. Liver transplantation has evolved 
into a routine, life-saving procedure. We have seen the global 
success of hepatitis A and B vaccination programs, and we are 
following the clinical development of new generations of direct-
acting anti-HCV drugs that hopefully will provide more effective 
and less toxic anti-HCV therapies. Finally, hepatocellular carci-
noma, which is one of the top killers globally and one of the most 
important complications of end-stage liver disease, has become an 
area for innovative, molecularly targeted, anticancer therapies. We 
will be very pleased if this seventh edition is regarded as an inter-
national textbook for a global readership helping to combat a 
global health burden.

Arun J. Sanyal, MBBS, MD



2	 SECTION I  Basics

2

1 
Anatomy and Cellular Functions  
of the Liver
LIHUI QIN AND JAMES M. CRAWFORD

Introduction
The liver is the largest organ in the human body. With the excep-
tion of the daily secretion of several liters of bile, there are no 
“moving parts” in the liver. This deceptive anatomic simplicity 
belies the extraordinary complexity of the biosynthetic and bio-
degradative pathways within the liver, serving as major elements 

of systemic metabolic and physiologic homeostasis (Table 1-1). In 
the process, the liver generates enough metabolic heat to be a 
prime source of core homeostatic temperature maintenance.

Gross Anatomy
The mature liver lies mainly in the right hypochondriac and epi-
gastric regions of the abdominal cavity, below the diaphragm. The 
liver is attached to the diaphragm and protected by the ribs. In 
adults, the healthy liver weighs approximately 1400 g to 1600 g 
and extends along the midclavicular line from the right fifth 
intercostal space to just inferior to the costal margin. The anterior 
border of the liver then extends medially and crosses the midline 
just inferior to the xiphoid process. A small portion of the organ 
projects across the midline and lies in the upper left abdominal 
quadrant.

The liver is incompletely separated into lobes that are covered 
on their external surfaces by a thin connective tissue capsule. On 
the basis of external surface features, the liver is divided into right 
and left lobes by the falciform ligament, which is a peritoneal fold 
connecting the liver to the anterior abdominal wall and the dia-
phragm (Fig. 1-1). The right lobe is further subdivided inferiorly 
and posteriorly into two smaller lobes—the caudate and quadrate 
lobes.

The macroscopic functional divisions of the liver, however, 
are defined on the basis of vascular anatomy (Fig. 1-2). First is a 
plane that passes through the gallbladder and inferior vena cava, 
to the right of the midplane of the abdomen, that defines the 
halves of the liver supplied by the right and left branches of the 
portal vein and hepatic artery, together with biliary drainage into 
the right and left hepatic ducts. As a result, the quadrate lobe 
and a large portion of the caudate lobe are located to the right 
of the groove of the inferior vena cava but belong functionally to 
the left hemiliver. Further functional subdivision of the liver into 
eight segments having independent vascular and biliary supplies 
enables surgeons to resect segments of the liver while maintaining 
relative hemostasis.1-3

The liver is encapsulated by a thin connective tissue layer (Glis-
son’s capsule) consisting mostly of regularly arranged type I col-
lagen fibers, scattered type III fibers, fibroblasts, mast cells, and 
small blood vessels and containing sensory nerves. On the convex 
liver surface facing the abdominal cavity this connective tissue 
layer is covered by the simple squamous mesothelial cells of the 
peritoneal serosal lining. At the superior site of attachment of the 

A B B R E V I AT I O N S
AGE  advanced glycation end-product
APC  antigen-presenting cell
CGRP  calcitonin gene-related peptide
GERL  Golgi-SER-lysosome
HD  high density
HSC  hepatic stellate cell
ICAM-1  intercellular adhesion molecule-1
LAL  liver-associated lymphocyte
LD  low density
LFA-1  lymphocyte associated antigen-1
LGL  large granular lymphocyte
LPS  lipopolysaccharide
MDSC  myeloid-derived suppressor cell
NK  natural killer
nNOS  neuronal nitric oxide syndrome
NPY  neuropeptide Y
PG  prostaglandin
RER  rough endoplasmic reticulum
SDF  stromal-derived factor
SER  smooth endoplasmic reticulum
SMA  smooth muscle actin
SOM  somatostatin
SP  substance P
TGFβ  transforming growth factor β
TLR  toll-like receptor
TNFα  tumor necrosis factor α
Treg  regulatory T cell
TXA2  thromboxane A2

VCAM-1  vascular cell adhesion molecule-1
VIP  vasoactive intestinal peptide
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falciform ligament to the liver, the two leaves of the ligament 
separate to form a large convex area devoid of peritoneum, the 
bare area, on the superior surface of the liver, directly apposed to 
the diaphragm. The right and left leaves of the falciform ligament 
then merge with reflections of the parietal peritoneum extending 
from the diaphragm forming, respectively, the triangular ligament 
over the left dome of the liver and the coronary ligament over the 
right dome of the liver. The posterior aspect of the liver is covered 
by peritoneal serosa, with reflections at the groove of the inferior 
vena cava into which the multiple hepatic veins empty.

The dual blood supply of the liver enters the organ at its hilus 
(porta hepatis) accompanied by the hepatic bile duct, lymphatics, 
and nerves. Approximately 80% of the blood entering the liver is 
poorly oxygenated and is supplied by the portal vein. This is the 
venous blood flowing from the intestines, pancreas, and spleen; 
venous blood from the gallbladder either drains into a cystic vein, 

TABLE 
1-1  Major Elements of Hepatic Function

Cell Type Function

Hepatocytes Bile secretion
Bile salt biosynthesis, conjugation, and secretion
Bilirubin uptake, conjugation, and secretion
Phospholipid and cholesterol secretion

Plasma protein biosynthesis and secretion
Plasma lipoproteins
Plasma coagulation factors (prothrombin, 

fibrinogen, complement factors)
Albumin
Transferrin

Plasma protein uptake and degradation
Plasma lipoproteins

Glucose homeostasis
Metabolism and detoxification of drugs and toxins

Cholangiocytes Secretion of bicarbonate-rich fluid into bile

Sinusoidal 
endothelial 
cells

Fenestrated barrier between sinusoidal blood and 
hepatocytes

Endocytic processing of plasma proteins
Lipoproteins
Advanced glycosylation end products
Immune complexes

Immunoregulatory function
Regulatory input into hepatic stellate cell, hepatocyte, 

and Kupffer cell function

Kupffer cells Phagocytosis of particulate matter in sinusoidal blood
Phagocytosis of apoptotic and necrotic hepatocellular 

debris
Clearance of circulating microorganisms and 

endotoxin
Immunoregulatory function
Regulatory input into hepatic stellate cell, hepatocyte, 

and sinusoidal endothelial cell function

Hepatic 
stellate cells

Storage of vitamin A
Control of microvascular tone of the sinusoid
Production of extracellular matrix
Regulatory input into hepatic regeneration
Immunoregulatory function

Fibrocytes 
(portal tract)

Production of extracellular matrix

• Fig. 1-1  Lobes, surfaces, and ligaments of the liver viewed anteriorly (left) and from a posteroinferior 
perspective (right). (Modified from Moore KL, Dalley AF. Clinically oriented anatomy, 4th ed. Philadelphia: 
Lippincott Williams & Wilkins, 1999: 264, ©1999, with permission from Lippincott Williams & Wilkins 
[http://lww.com].)
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• Fig. 1-2  Segmentation of the liver based on principal divisions of 
the portal vein and hepatic artery. (Modified from Moore KL, Dalley AF. 
Clinically oriented anatomy, 4th ed. Philadelphia: Lippincott Williams & 
Wilkins, 1999: 268, ©1999, with permission from Lippincott Williams & 
Wilkins [http://lww.com].)
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transversum as thick multicellular anastomosing cords. They 
become interspersed within the developing anastomotic network 
of capillaries arising from the symmetrically arranged vitelline 
veins returning from the abdominal cavity of the embryo, thus 
beginning to establish the close relationship of the hepatic paren-
chymal cells to the sinusoids. Blood draining from the parenchy-
mal sinusoidal plexus within the nascent liver passes through the 
symmetric right and left hepatocardiac channels, to enter the sinus 
venosus.

This embryonic vascular pattern gives way to the definitive 
fetal vascular pattern by the seventh week: the paired vitelline 
veins unite to form a single portal vein, which divides into right 
and left branches upon entering the liver, and arterial sprouts from 
the hepatic arterial branch of the celiac axis course along the 
intrahepatic portal tree and become the organizing elements for 
formation of the intrahepatic biliary tree.6,7 Within the paren-
chyma, the anastomotic pattern of both multicellular cords of 
parenchymal cells and sinusoids persists until several years after 
birth, by which time cords consisting of two or more parenchymal 
cells bounded on several sides by sinusoids have become plates 
consisting of single parenchymal cells bounded on at least two 
sides by sinusoids, particularly in the centrilobular region.

which empties into the right branch of the portal vein, or via small 
veins in the gallbladder bed directly into the parenchyma of the 
liver. The remaining 20% of the hepatic blood supply is well 
oxygenated and delivered by the hepatic artery.

Development of the Liver
The development of the liver has been extensively described,1,2,4-6 
and is illustrated in Fig. 1-3. Briefly, the liver primordium appears 
in human embryos during the third week of gestation as an endo-
dermal bud from the ventral foregut just cranial to the yolk sac. 
This bud becomes the hepatic diverticulum as it enlarges, elon-
gates in a cranio-ventral fashion, and develops a cavity contiguous 
with the foregut. The hepatic diverticulum consists of three por-
tions: (1) the hepatic portion forms the hepatic corpus, including 
parenchymal cells and the elements of the portal tree; (2) the 
cystic portion forms the gallbladder; and (3) the most ventral 
portion forms the head of the pancreas. The hepatic portion grows 
into the septum transversum—a plate of mesenchyme that incom-
pletely separates the thoracic and peritoneal cavities. During the 
fourth week of development, buds of epithelial cells extend from 
the hepatic diverticulum into the mesenchyme of the septum 

• Fig. 1-3  Development of the liver. (A) Section through the region of the hepatic bud of a human embryo 
of 25 somites (26 days). (B) Vascular channels associated with the developing liver in a human embryo 
of 30 somites. (C) Vascular channels at a later stage showing development of the sinusoidal network. 
(D) Portal hepatic circulation in a human embryo of 17 mm (7 weeks). (Reproduced from MacSween 
RNM, et al. Functional morphology of the liver with emphasis on its microvasculature. In: MacSween 
RNM, et al., editors. Pathology of the liver, 4th ed. London: Churchill Livingstone, 2002: 4, ©2002, with 
permission of Elsevier.)
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within portal tracts are usually collapsed and inconspicuous, as 
are the autonomic nerves, unless the latter are highlighted by 
special techniques (Fig. 1-8).

After repeated bifurcation, terminal branches of the portal 
veins and hepatic arteries supply blood to the sinusoids, extending 
roughly perpendicularly into the watershed regions between 
neighboring portal tracts (Fig. 1-9). Branches of hepatic arteries 
also supply the peribiliary plexus of capillaries nourishing the bile 
ducts. These capillary plexuses then drain into sinusoids (via arte-
riosinus twigs, Fig. 1-10), or occasionally into portal venules 
(arterioportal anastomoses). Because all these vessels have inde-
pendently contractile periarteriolar sphincters, the sinusoids 
receive a varying mixture of portal venous and hepatic arterial 
blood.9,10 After flowing through the sinusoids, blood is collected 
in small branches of hepatic veins (terminal hepatic veins, see Fig. 
1-9). These veins course independently of the portal tracts and 
drain via the major hepatic veins, which emerge to join the infe-
rior vena cava through separate orifices from the major liver lobes.

Lymphatic fluid originates from retrograde fluid flow in the 
space of Disse and is thereby collected into blind-ended lymphatic 
capillaries in the connective tissue spaces within the portal tracts.11 
The actual connection between the proximal end of the space of 
Disse at the portal tract–parenchymal interface and lymphatic 
channels is attributed to a proposed space of Mall,12 the existence 
of which has never been proven. The fluid contained in these 
lymphatics moves toward the hepatic hilus and eventually into the 
cisternae chyli and thoracic duct. Lymph also leaves the liver in 

• Fig. 1-4  Normal hepatic microarchitecture. A medium-power image 
of a reticulin-stained liver highlights architectural relationships in the paren-
chyma. A portal tract (PT, right) is separated by parenchyma from the 
terminal hepatic vein (THV, left). 

Between the sixth week and birth the fetal liver serves as a 
hematopoietic organ and as the primary site for fetal blood forma-
tion until the third trimester, when most hematopoietic sites 
disappear as the bone marrow develops. Throughout the third 
trimester and well through childhood, the liver microanatomy 
matures from the hilum outwards, with the final maturation of 
the parenchyma not being completed until the adolescent years.

Microscopic Architecture
Fundamental understanding of liver function begins with knowl-
edge of microscopic architecture (Fig. 1-4, Table 1-2). Portal tracts 
are the distribution network for the portal vein and hepatic arte-
rial systems, and in turn the effluent collection network for the 
biliary tree. The parenchyma is home to hepatocytes, which 
account for 60% of the total cell population and 80% of the 
volume of the liver and are organized in an anastomosing system 
of plates that traverse the distance from the portal tract to the 
terminal hepatic venule. Between the plates of hepatocytes are the 
vascular spaces, termed sinusoids. This is a unique vascular bed, 
with large-bore fenestrated vascular channels that lack a basement 
membrane and allow free exchange of circulating macromolecules 
with hepatocytes (Fig. 1-5). So-called nonparenchymal cells lining 
the sinusoid include: sinusoidal endothelial cells, perisinusoidal 
hepatic stellate cells, and intraluminal Kupffer cells. Lastly, blood 
flowing through the sinusoids exits the liver through the branches 
of the hepatic venous system, the smallest of which is the terminal 
hepatic vein (also termed the central vein, as will be discussed).

Portal Tracts and the Biliary System
Both the portal vein and the hepatic artery, together with efferent 
autonomic nerves, enter the liver at the hilum. The hilum is also 
the site where bile ducts and lymphatics exit the liver. Branches 
of the hepatic artery, portal vein, bile duct, and lymphatic vessels 
ramify together in portal tracts through the liver parenchyma (Fig. 
1-6). Portal tracts are sometimes referred to as portal triads owing 
to their three main elements (portal vein, hepatic artery, bile duct, 
Fig. 1-7). However, portal tract is the preferred terminology, 
because there is often a multiplicity of hepatic artery–bile duct 
pairs within any given portal tract.8 The lymphatic channels 

TABLE 
1-2  Microscopic Structures of the Liver

Anatomic 
Compartment Structural Element Cell Types

Portal tract Portal vein

Hepatic artery

Bile duct
Peribiliary glands 

(larger portal 
tracts only)

Endothelial cells, smooth 
muscle cells

Endothelial cells, smooth 
muscle cells

Cholangiocytes
Glandular epithelial cells

Bile ductule
Lymphatics
Nerves

Cholangiocytes
Endothelial cells
Terminal twigs of autonomic 

nervous system
Canals of Hering (at 

the parenchymal-
portal tract 
interface)

Portal tract 
mesenchyme

Cholangiocyte-hepatocyte 
channels

Fibroblasts

Parenchyma Liver cell plates
Sinusoids

Hepatocytes
Nonparenchymal cells:

Sinusoidal endothelial 
cells

Kupffer cells
Hepatic stellate cells
Pit cells (large granular 

lymphocytes)

Terminal 
hepatic vein

Terminal hepatic vein Endothelial cells
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• Fig. 1-6  Hepatic microvasculature as determined by in vivo micro-
scopic studies. Smooth muscle cells at strategic points in the vascular 
network create functional sphincters that contribute to local blood flow 
regulation. Interconnections between the portal vein and hepatic artery 
network also are depicted. Arrows indicate direction of flow. BD, bile duct; 
HA, hepatic artery; L, lymphatic; N, nerve; PV, portal vein; SLV, sublobular 
hepatic vein; THV, terminal hepatic vein. (Modified from McCuskey RS. 
Functional morphology of the liver with emphasis on its microvasculature. 
In: Tavoloni N, Berk PD, editors. Hepatic transport and bile secretion. New 
York: Raven Press, 1993: 2, ©1993, with permission from Lippincott Wil-
liams & Wilkins [http://lww.com].)
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• Fig. 1-7  Normal portal tract. A high-power image shows a portal vein 
(PV) and a hepatic artery (HA)–bile duct (BA) pair, with a delicate invest-
ment of extracellular matrix. By routine light microscopy, nerves and lym-
phatic channels are not visible. An intraparenchymal segment of a canal 
of Hering (arrow, CoH) is visible to the right of the portal tract. Trichrome 
stain. 

• Fig. 1-5  Plates of hepatocytes (H) viewed by scanning electron microscopy. (A) The fracture plane 
highlights the lateral faces of hepatocytes (H), with bile canaliculi (arrow) in view. The labyrinth of sinusoidal 
spaces (S) is evident between hepatocytes plates. (B) A different image shows the sinusoidal spaces to 
better advantage. A Kupffer cell (KC) is present within the luminal space of the sinusoid. (Modified from 
McCuskey RS. Functional morphology of the liver with emphasis on its microvasculature. In: Tavoloni N, 
Berk PD, editors. Hepatic transport and bile secretion. New York: Raven Press, 1993: 2, ©1993, with 
permission from Lippincott Williams & Wilkins [http://lww.com].)
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alimentary tract. The most proximal junction of the parenchymal 
canalicular network with the biliary tree is the canal of Hering, 
with half its circumference composed of one (or two) hepatocytes, 
and the other half composed of cholangiocytes—the polarized 
epithelial cells of the biliary tree (Fig. 1-11, A). These structures 
were originally thought to be visible only by electron microscopy.13 
However, careful three-dimensional reconstruction histologic 
studies demonstrated that canals of Hering were visible by light 
microscopy14 and were shown to be present not just at the portal 
tract–parenchymal interface (as originally thought) but also 
extending into the hepatic parenchyma up to one third of the 
distance along the portal-to-central axis (see Fig. 1-11, B).6 A 
further finding was that the canals of Hering are the anatomic 
compartment containing bipotential progenitor epithelial cells, 
which were capable of immense regenerative activity when the 
liver incurred severe damage—particularly if this damage was 
occurring at the portal-parenchymal interface.15 Hence, canals of 
Hering are not only the most peripheral compartment of the 
biliary tree but also play a key role in the hepatic regenerative 
response to injury.

The biliary channel that traverses the short space between the 
portal-parenchymal interface and the bile duct is the bile ductule 
(Fig. 1-12). The bile ductule connects with the terminal bile duct 
at a roughly perpendicular angle—on three-dimensional step sec-
tions the angle of intersection is slightly off-perpendicular. The 
bile ducts converge down the length of the biliary tree, ultimately 
exiting the liver hilum as the right and left bile ducts to form the 
common hepatic bile duct just outside the liver corpus. Owing to 
normal variation in human bile duct anatomy, in 30% to 40% of 
individuals the confluence of the common hepatic bile duct is just 
internal to the liver.16

During hepatic morphogenesis, bile ductules and ulti-
mately bile ducts arise from bipotential primordial cells at the 
interface of the embryonic portal tract mesenchyme and the 

small lymphatics associated with the larger hepatic veins, which 
empty into larger lymphatics along the wall of the inferior vena 
cava. Lymphatics in the hepatic capsule drain to vessels either at 
the hilum or around the hepatic veins and inferior vena cava.1

The Biliary Tree
The biliary tree is the conduit by which fluid travels from the bile 
canaliculi between hepatocytes downstream to the lumen of the 

• Fig. 1-8  Intrahepatic aminergic innervation in the dog. Brightly fluo-
rescent nerve fibers are adjacent to the portal vein (PV), hepatic artery 
(HA), and bile duct (not visible in this section) and are also distributed 
intralobularly along the sinusoids (arrows). 

HA

PV

• Fig. 1-9  Vascular cast of the hepatic microvasculature via the portal 
vein, demonstrating parenchymal vascular channels by scanning elec-
tron microscopy. Blood entering the liver via the portal vein (PV) ramifies 
into the tortuous sinusoidal network. The sinusoids converge upon the 
terminal hepatic vein (labeled CV for central vein), through which blood 
exits the liver. (Modified from McCuskey RS. The hepatic microvascular 
system. In: Tavoloni N, Berk PD, editors. Hepatic transport and bile secre-
tion. New York: Raven Press, 1993: 4, ©1993, with permission from 
Lippincott Williams & Wilkins [http://lww.com].)
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• Fig. 1-10  Terminal ramifications of the portal vein (PV) and hepatic 
artery (HA). The portal vein gives rise to inlet venules that enter the paren-
chyma, from which sinusoids originate. Terminal branches (arrowheads) 
from hepatic artery frequently end in the inlet venules from the portal vein. 
The hepatic artery also gives rise to a peribiliary arteriolar plexus (B). (Modi-
fied from McCuskey RS. Functional morphology of the liver with emphasis 
on its microvasculature. In: Arias IM, et al., editors. The liver: biology and 
pathobiology, 3rd ed. New York: Raven Press, 1994: 1095, ©1994, with 
permission from Lippincott Williams & Wilkins [http://lww.com].)
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• Fig. 1-11  Canal of Hering. (A). Electron micrograph demonstrating a channel (asterisk) lined partially 
by a larger hepatocyte (H, lower left) and partially by smaller cholangiocytes. (Courtesy of Donna Beer 
Stolz.) (B) High power light-micrograph of an H&E-stained tissue section, showing a linear array of chol-
angiocytes among hepatocytes, representing the extension of a canal of Hering into the most proximal 
portion of the periportal parenchyma. 

• Fig. 1-12  Biliary structures in the portal tract, highlighted by cyto-
keratin 19 immunostaining. A canal of Hering within the periportal paren-
chyma (asterisk) drains into a bile ductule, which traverses the parenchymal 
mesenchyme to empty into a bile duct (BD). As the bile ductule is angled 
slightly in relationship to the bile duct, the full length of the ductule is not 
visible in this one section. Tissue from an 18-week human fetus, so as to 
illustrate the nascent relationships of these three elements of the intrahe-
patic biliary tree. (Adapted from Crawford JM. Development of the intra-
hepatic biliary tree. Semin Liver Dis 2002; 22: 213–226, ©2002, with 
permission from Thieme-Stratton.)

parenchyma—termed the ductal plate.6 As noted earlier, the pen-
etration of hepatic artery branches into the embryonic portal 
tract mesenchyme appears to act as an organizing influence for 
ontogeny of the terminal bile ducts, and for creation of the arterial 
vascular supply for bile ducts. This in-growth of hepatic arterial 
elements and maturation of bile ducts begins at the hilum of the 
liver and extends outwards not only during the fetal period of 

liver development but also well into the growing years of child-
hood as the liver continues to enlarge to reach its adult size by 
early adolescence. This ontogeny is evident in the mature adult 
liver by the uniform 1 : 1 pairing of hepatic arteries and terminal 
bile ducts in cross-sections of terminal portal tracts (see Fig. 1-7).6

As regards the branching of the intrahepatic biliary tree, retro-
grade injection studies can demonstrate approximately 10 orders 
of dichotomous branches.17 However, in three-dimensional studies 
of the human adult liver, one terminal bile duct is observed for 
every 2 mm3 to 3 mm3 of the adult liver, therefore representing 
the volume of a liver microarchitectural unit.18,19 Based on the 
average size of the adult liver, between 17 and 20 orders of branch-
ing of the intrahepatic biliary tree would be expected. Given the 
limitations of retrograde filling techniques, and uncertainty in 
whether the terminal biliary tree branches symmetrically (dichot-
omously) or asymmetrically, the exact geometry of the intrahe-
patic biliary tree remains conjectural. Regardless, the adult liver 
must be supplied by 400,000 to 500,000 terminal bile ducts, 
corresponding to the estimated 440,000 microarchitectural units 
(defined as lobules or otherwise, see later) estimated to exist in 
the adult liver.20

Cholangiocytes
Cholangiocytes constitute 3% to 5% of the endogenous liver cell 
population,21 beginning with the canals of Hering, bile ductules, 
and then lining the intrahepatic and extrahepatic bile duct system. 
Cholangiocytes are not inert; they modify the composition of bile 
during its transit through bile ducts by the secretion and absorp-
tion of water, electrolytes, and other organic solutes.22,23 Indeed, 
in humans up to 40% of basal bile flow is produced by the ductal 
epithelium.24 This secretion is driven by sodium and bicarbonate 
transport out of the cholangiocyte into the duct lumen, followed 
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underlies the capsule of the liver (Glisson’s capsule), ensheathes 
the intrahepatic venous system, and under normal conditions is 
found within the space of Disse only as delicate bundles of type 
IV collagen—the so-called reticulin network of the parenchyma. 
However, most of the extracellular matrix visible on histologic 
sections of the normal liver is within portal tracts, surrounding 
the normal vascular and biliary structures. This mesenchymal 
investment is minimal in the most terminal portal tract branches 
(see Fig. 1-7). The mesenchymal content is more prominent in 
the larger sublobular portal tracts.

Portal tracts contain fibroblasts, which encircle bile ducts and 
bile ductules and may also be found elsewhere in portal tracts.40-42 
In the first instance, the basement upon which cholangiocytes 
reside is surrounded directly by peribiliary fibroblasts.43 In the 
settings of bile duct inflammation and/or obstruction, these fibro-
blasts are rapidly activated with acquisition of smooth muscle 
actin, generating a myofibroblast phenotype.41 In other settings, 
such as hepatitis, other populations of fibrogenic cells in portal 
tracts play a role. These include myofibroblasts loosely placed 
around the portal vein and hepatic artery, and fibrocytes in the 
loose connective tissue of the portal tract, especially at the inter-
face between the portal tract and parenchyma.44 Thus, in discus-
sions of hepatic fibrogenesis, it is important to keep these particular 
cell types in mind.

Lobular and Acinar Functional Units
Models of hepatic parenchymal microarchitecture have been 
debated for the past century, and they are not mutually exclusive. 
The essential terms are lobule and acinus (Fig. 1-14). The classic 
hepatic lobule is a polygonal structure having as its central axis 
the terminal hepatic vein (in this model termed the central vein) 
with portal tracts distributed along its peripheral boundary.45 The 
ideal formulation of the classic lobule is hexagonal with portal 
tracts at three of the six apices of the hexagon. In reality, the 
peripheral boundaries of lobules are poorly defined, and terminal 
hepatic veins may be draining sinusoidal blood supplied by a 
smaller or larger number of nearby portal tracts.18 A key corollary 
of this terminology is that the region of the lobule around the 
terminal hepatic vein (or the central vein) is called centrilobular, 
and the region around the portal tract is called periportal.

An uncommonly used concept of lobular organization is the 
portal lobule, defined by bile drainage, with a portal tract at the 
center and terminal hepatic veins at the periphery.

The hepatic acinus46 is a smaller triangular unit with the portal 
tract at one apex of the narrow base, a watershed region of the 
parenchyma at the other apex of the base, and the terminal hepatic 
vein at a more distant apex (see Fig. 1-14). The acinar concept 
aligns with the pattern of blood flow, in that there are penetrating 
portal venular channels that exit portal tracts and run along the 
base of the acinar triangle towards the watershed region.47 In turn, 
terminal twigs of the hepatic arterial system also extend a short 
distance into the parenchyma. A broad front of blood thus travels 
through the sinusoids from the base of the acinar triangle towards 
the apex at the terminal hepatic vein, creating three zones. Zone 
1 is the region of the parenchyma most proximate to vascular 
inflow, and thus is most oxygenated and has the most ready access 
to nutrients. Zone 2 is the midparenchymal region, and Zone 3 
is the most distal from the vascular inflow. Zone 3 thus has the 
lowest oxygen content, and is most downstream from nutrient 
inflow. The effects of this lobular gradient (noting the interchang-
ing of terms) will be examined in a subsequent section.

by regulated passage of water through the intercellular tight junc-
tions. Cholangiocyte secretion is under hormonal control by 
secretin and somatostatin.25 The duct epithelium also secretes IgA 
and IgM (but not IgG).26 Cholangiocytes reabsorb solutes from 
bile: glucose, glutamate, urate, and especially bile acids. Bile acids 
resorbed by the biliary epithelium are recirculated to hepatocytes 
via the peribiliary capillary plexus, creating a cholehepatic shunt 
pathway and promoting bile acid–dependent bile flow.27

Cholangiocytes display phenotypic heterogeneity along the 
length of the biliary tree,28,29 including their becoming larger in 
basal-to-apical diameter with increasing diameter of the biliary 
lumen, concurrent with their acquiring increasing cytoplasmic 
complexity as evidenced by intracellular organelles such as the 
Golgi complex, intracytoplasmic vesicles, and mitochondria.30 
Cholangiocytes express receptors for epidermal growth factor, 
secretin, and somatostatin31 and may secrete proinflammatory 
cytokines.32 As would be expected for polarized epithelial cells 
residing on a basement membrane, cholangiocytes express cell-
matrix adhesion molecules such as integrins in abundance.33

Peribiliary Glands
Extrahepatic bile ducts and the large bile ducts of the perihilar 
intrahepatic biliary tree have companion peribiliary glands, com-
posed of branched tubule-alveolar seromucinous glands,34 (Fig. 
1-13). Along with mucin, these glands secrete substances such as 
lactoferrin and lysozyme.35 They are reported to be stem cell 
niches of the biliary tree36 capable of differentiating into hepato-
biliary and pancreatic cells.37,38 Thus, in addition to providing 
their seromucinous secretions to the flow of bile, cells of the 
peribiliary glands may play a key role in normal tissue turnover 
and injury repair.38

Portal Tract Mesenchyme
The liver has only a small amount of connective tissue in relation 
to its size: 5% to 10% of total protein and less than 3% of the 
relative area on a routine histologic section.39 Extracellular matrix 

• Fig. 1-13  Peribiliary glands. A cluster of peribiliary glands, with their 
conducting ducts (upper portion of the image), are present near the 
hepatic hilum. A major bile duct is present (lower right), along with an 
incidental aggregate of inflammatory cells (upper left). 
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Plasma Membrane
The hepatocyte basolateral plasma membrane is the site of uptake 
of blood-borne substances into hepatocytes, and secretion of 
hepatocellular products into the blood. This exchange of products 
is facilitated by the absence of a basal lamina between hepatocytes 
and the overlying sinusoidal endothelium, and by fenestrations 
in the endothelial cells. In addition to receptor proteins and 
a robust population of plasma membrane protein transporters 
for exchange of inorganic and organic solutes,52 the basolateral 
membrane is a site of vigorous endocytic uptake and secretion 
of proteins.53

The lateral plasma membrane contains gap junctions that 
facilitate intercellular communication between adjacent hepato-
cytes along the length of the hepatocyte plate.54 Gap junctions are 
an assemblage of connexons—membrane pores formed by the 
circular arrangement of six transmembrane proteins called con-
nexins. Connexons in opposing plasma membranes are directly 
aligned and form aqueous channels that allow the passage of ions 
and small molecules, enabling the propagation of signals between 
adjacent cells. Desmosomes in the lateral membranes, as well as 
interdigitating undulations of adjacent plasma membranes, com-
plete the stitching together of adjacent hepatocytes along the 
length of the hepatocyte plates.

The apical surface of the hepatocyte plasma membrane is the 
site of secretion of electrolytes and organic solutes so as to form 
bile.52 Transepithelial endocytic traffic of plasma solutes contrib-
utes to approximately 4% of the volume of secreted bile. Lyso-
somal contents are also discharged into the biliary space to a lesser 
extent.55

Hepatocytes
Hepatocytes are polyhedral cells approximately 20 µm to 30 µm 
in diameter, with a volume of approximately 5000 µm3. Their 
organization into anastomosing plates of the parenchyma is best 
illustrated by scanning electron microscopy (see Fig. 1-5).48-51 
The liver cell plates anastomose extensively in the periportal 
region, but become more simplified and radially oriented as they 
approach the terminal hepatic vein. Similar to other polarized 
epithelial cells, hepatocytes have distinct regions of the plasma 
membrane. The basal surfaces of hepatocytes face the sinusoid; 
with plasma membranes that have microvilli extending into the 
space of Disse (the space between hepatocytes and endothelial 
cells), increasing the surface area available for the exchange of 
materials between hepatocytes and blood plasma. Facing adjacent 
hepatocytes is the lateral surface of the hepatocyte. Because these 
two regions are topologically in continuity and are considered as 
one functional unit, the common term is the basolateral plasma 
membrane.

Directly between adjacent hepatocytes is an interconnecting 
network of intercellular channels between 1 µm and 2 µm in 
diameter termed bile canaliculi, constituting the apical or cana-
licular domain of the plasma membrane (see Fig. 1-5, A). The 
apical plasma membrane also forms microvilli to increase the 
surface area available for secretion. The apical domain is delin-
eated from the basolateral plasma membrane by a continuous 
barrier of tight junctions (Figs. 1-15 and 1-16). Hepatocytes 
secrete bile into the canalicular space; the bile then drains toward 
portal tracts through the bile canalicular network (Fig. 1-17) for 
collection into the biliary system.

• Fig. 1-14  Microarchitecture of the liver. A primary lobule is formed from the inlet venules arising from 
portal veins (PV), giving rise to a sinusoidal “front” of blood that moves across equipotential lines A, B 
and C towards the terminal hepatic vein (THV). The acinus concept recognizes this front of blood as 
moving through Zones 1, 2 and 3 en route to the terminal hepatic vein. These three zones exhibit differing 
oxygenation and metabolism. The concept of the conical hepatic microcirculatory (HMS) unit recognizes 
an even smaller parenchymal unit, each being supplied by a single inlet venule. The classic lobule places 
the terminal hepatic vein (THV, also called a central vein) at the center, and portal tracts with their portal 
vein (PV) and hepatic artery (HA) at the periphery. The concept of a portal lobule, with a portal tract at its 
center, is essentially obsolete. (Modified from McCuskey RS. Functional morphology of the liver with 
emphasis on its microvasculature. In: Tavoloni N, Berk PD, editors. Hepatic transport and bile secretion. 
New York: Raven Press, 1993: 4, ©1993, with permission from Lippincott Williams & Wilkins [http://
lww.com].)
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Nucleus
Hepatocytes have one or two spherical nuclei containing one or 
more prominent nucleoli (see Figs. 1-15 and 1-16).1,2,51 In human 
adults, 40% of hepatocytes are tetraploid rather than diploid, and 
hepatocyte ploidy number increases either as the cell ages or when 
the liver is stimulated to regenerate or respond to metabolic over-
load or oxidative stress.56 Polyploid nuclei are characterized by 
their greater size, which is directly proportional to their ploidy. 
Multinucleated hepatocytes and polyploidy are consistent with 
high cellular function and demands and are mechanisms by which 
both nuclear and cytosomal biosynthetic machinery are increased 
to meet these functional demands. The high level of hepatocellular 
biosynthetic activity is also reflected in the high percentage of 
nuclei that are euchromatic, which indicates that transcription of 
most of the genome is occurring continuously. Thus, almost all 
of the deoxyribonucleic acid (DNA) is in the extended configura-
tion, and little heterochromatin is observed. Hepatocytes engaged 
in the synthesis of many proteins have a large nucleolus (some-
times several) that can be recognized by light microscopy, and this 
characteristic is typical of hepatocytes.

The nucleolus is where ribosomal genes are located and ribo-
some biogenesis occurs.57 Electron microscopy reveals the nucleo-
lus to contain three main components: roundish fibrillar centers 
composed of thin loosely distributed fibrils, a dense fibrillar com-
ponent containing tightly packed fibrils that surround the fibrillar 
centers, and a granular component constituted by granules that 
embed both fibrillar components. Ribosomal genes exist in an 
extended ready-to-be-transcribed configuration within the fibril-
lar centers and, in part, in the dense fibrillar component. Although 
the precise location of ribosomal gene transcription remains 
unclear, newly transcribed RNA molecules undergo early process-
ing and maturation in the dense fibrillar component and are 
assembled into preribosomes in the granular component. Protein-
rich ribosomal subunits then exit the nucleus through pores in 
the double membrane nuclear envelope.

Endoplasmic Reticulum, Ribosomes,  
and Golgi Apparatus
Rough endoplasmic reticulum (RER), smooth endoplasmic retic-
ulum (SER), and Golgi complexes are abundant in mammalian 

• Fig. 1-15  Portions of three hepatocytes and a sinusoid. The lateral 
plasma membranes between hepatocytes are highlighted (arrowheads); 
two bile canaliculi are visible (BC). A sinusoid is present (S), with a sinu-
soidal endothelial cell (E) and the underlying space of Disse (D). A hepa-
tocyte nucleus is present at the bottom (N), along with smooth endoplasmic 
reticulum (SER), rough endoplasmic reticulum (RER), Golgi (G), lysosomes 
(L), and mitochondria (M). The inset shows lateral hepatocyte plasma 
membranes immediately adjacent to a bile canaliculus (BC), with the tight 
junctional zone (arrowhead) and desmosomes (DS). 
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• Fig. 1-16  Two adjacent hepatocytes and enclosed bile canaliculus 
(BC) and associated organelles. G, Golgi; g, glycogen; L, lysosome; M, 
mitochondria; N, nucleus; P, peroxisome; SER, smooth endoplasmic 
reticulum. Arrowheads, tight junctions. 
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• Fig. 1-17  Bile canalicular network filled with dye injected retrograde 
into the bile duct. 
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biosynthetic capabilities.61 With the SER, RER, lysosomes, other 
intermediate organelle compartments, and even the nuclear and 
mitochondrial envelope membranes, the Golgi is an integral part 
of the complex intracellular organelle network involving vesic-
ular trafficking that enables uptake, sorting, degradation, bio-
synthesis, trafficking, and/or secretion of cellular proteins and  
lipids.60-63

Mitochondria
Mitochondria are large organelles and are very numerous in hepa-
tocytes (1-2000 per cell; see Figs. 1-15 and 1-16), constitut-
ing approximately 18% to 20% of the cell volume.64 They are 
the site of oxidative phosphorylation of adenosine diphosphate 
(ADP) to adenosine triphosphate (ATP), constituting the source 
of aerobic cellular metabolism.51 Although the mitochondria are 
dispersed ubiquitously within hepatocytes, they are more concen-
trated near sites of ATP utilization and are often associated with  
the RER.

Mitochondria in hepatocytes may be round or elongated, with 
a width of between 0.4 µm and 0.6 µm and a length of between 
0.7 µm and 1.0 µm. Longer (up to 4 µm) and larger (up to 
1.5 µm in diameter) mitochondria are more numerous in peri-
portal hepatocytes.64 Mitochondria are bounded by an outer and 
an inner membrane, each 5 nm to 7 nm thick. The outer mem-
brane possesses special pores that allow the passage of molecules 
smaller than approximately 2000 Da. The inner membrane’s 
surface area is greatly increased by the presence of numerous 
cristae, which fold within the mitochondrial matrix. The space 
between inner and outer membranes presents a low-density matrix 
and ranges from approximately 7 nm to 10 nm in thickness. 
Mitochondria have a relatively low-density internal matrix in 
which lamellar or tubular cristae and a variable amount of small 
dense granules can be observed. The dense granules have a diam-
eter of between 20 nm and 50 nm. In addition, filaments of 
circular mitochondrial DNA of approximately 3 nm to 5 nm in 
width and granules of approximately 12 nm in diameter contain-
ing mitochondrial RNA are also present. The DNA codes for 
some of the mitochondrial proteins that are synthesized in ribo-
somes within the organelle, but most of the mitochondrial protein 
is encoded by nuclear DNA. Mitochondria are self-replicating and 
have a half-life of approximately 10 days.

Lysosomes
Lysosomes in hepatocytes (see Figs. 1-15 and 1-16) consist of a 
heterogeneous population of organelles that are morphologically 
and functionally interrelated and contain hydrolytic enzymes.51,65 
These organelles form rounded single membrane–bound dense 
bodies, autophagic vacuoles, multivesicular bodies, and coated 
vesicles. In keeping with the earlier comments regarding the Golgi 
apparatus, lysosomes may be part of the intracellular membranous 
network known as the GERL (Golgi-SER-lysosome). The GERL 
is involved with endocytosis and exocytosis, serving as a site for 
sorting of secretory proteins for secretion and for trafficking of 
endocytosed proteins to lysosomes for degradation. Indeed, the 
GERL is the site where acid phosphatase makes its first appear-
ance, most likely playing a role in formation of lysosomes.

Several classes of lysosomes can be identified within the hepa-
tocyte cytoplasm:
•	 Primary lysosomes, small in size, are considered from a func-

tional point of view to be in a resting phase.

hepatocytes (see Figs. 1-15 and 1-16).1,2,51,58 Their functions are 
related mainly to the synthesis and conjugation of proteins, 
metabolism of lipids and steroids, detoxification and metabolism 
of drugs, and breakdown of glycogen. The endoplasmic reticulum 
forms a continuous three-dimensional network of tubules, vesi-
cles, and lamellae. Almost 60% of the endoplasmic reticulum has 
ribosomes attached to its cytoplasmic surface and is known as the 
RER. The remaining 40% constitutes the SER, which lacks a 
coating of ribosomes. The membranes of the endoplasmic reticu-
lum are between 5 nm and 8 nm thick. The lumen of the RER 
is approximately 20 nm to 30 nm wide, whereas that of the SER 
is larger (30-60 nm). The morphologic characteristics and amount 
of the endoplasmic reticulum vary in the different zones of the 
liver lobule.

RER is arranged in aggregates of flat cisternae that may be 
found throughout the cytoplasm. It is more frequently distrib-
uted in the perinuclear, pericanalicular, and subbasilar regions of 
hepatocytes, and it is more abundant in periportal cells than in 
centrilobular cells.59 The numerous attached membrane-bound 
ribosomes consist of a large and a small subunit, with the large 
subunit attached to the RER. Free ribosomes and polyribosomes 
are also present within the hepatocyte cytoplasm. Ribosomes 
contain RNA and ribosomal proteins and play a key role in the 
synthesis of proteins, particularly those destined for secretion 
or for delivery to intracellular membrane compartments or the 
plasma membrane. Vesicles containing these proteins are directed 
to the proximate (cis) cisternae of the Golgi apparatus, for further 
processing.

SER is less common and has a more complex arrangement than 
RER.51 It is usually much more abundant in centrilobular than 
in periportal hepatocytes59,60; the high content of heme-containing 
cytochromes lends a darker pigmentation to the centrilobular 
region of the lobule, as is evident on visual inspection of the cut 
surface of the liver. The matrix within the SER tubules is usually 
slightly more electron-dense than the surrounding cytoplasm. 
SER membranes are irregular in size and present a tortuous 
course. They may be tubular or vesicular in structure with a width 
of 20 nm to 40 nm. SER is mainly distributed near the periphery 
of the cell. It is often in close relation to RER and Golgi mem-
branes, as well as to glycogen inclusions.51

The ER is not the only site of protein synthesis in hepatocytes. 
Abundant free ribosomes in the cytoplasm participate in the syn-
thesis of some proteins that will be secreted but synthesize essen-
tially all of the structural proteins for the hepatocyte. Proteins that 
are to remain within the cytoplasm or are destined to enter the 
nucleus, peroxisomes, or mitochondria are completely synthesized 
by free ribosomes.

The Golgi complex is a three-dimensional structure in hepato-
cytes, characteristically consisting of a stack of four to six parallel 
cisternae, often with dilated bulbous ends containing electron-
dense material.10,51,58 Multiple Golgi complexes exist in each 
hepatic parenchymal cell, generally distributed near the nucleus. 
This structure shows a convex or proximal portion facing the 
nucleus and the endoplasmic reticulum (cis-Golgi), where small 
vesicles transfer proteins from the endoplasmic reticulum to the 
Golgi, and a concave part (trans-Golgi), which connects with 
a post-Golgi trans-Golgi network that directs proteins towards 
their final destinations: to organelle membranes of the cell, the 
plasma membrane, or for secretion. The cisternae may be up to 
1 µm in diameter with a lumen that is 30 nm wide. The Golgi 
complex is capable of rapid and reversible structural reorgani-
zation into a tubuloglomerular network, while maintaining its 
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(apoferritin) 11 nm in diameter and an iron-containing central 
core approximately 5 nm in diameter. Hepatocyte iron deposits 
may also occur as single membrane-bound lysosomal bodies 
(residual bodies) forming aggregates of iron-containing electron-
dense particles (siderosomes-hemosiderin granules). In addition 
to hepatocytes, liver endothelial cells and Kupffer cells71 also accu-
mulate intracellular iron under conditions of iron overload.

Cytoskeleton and Cytomatrix
The cytoskeleton is a structure that is considered to regulate the 
shape, subcellular organization, and movements of the cells. In 
the hepatocyte the cytoskeletal organization is dependent on the 
arrangement of the three main components of this structure: the 
microfilaments, the intermediate filaments, and the microtu-
bules.72,73 These filament types are regularly distributed in the 
cytoplasm and characterize the cytomatrix, which together with 
other finer filaments (microtrabeculae) is believed to contribute 
to the gel consistency of cytoplasm. Microfilaments, made of 
actin, and microtubules, consisting of tubulin, are both involved 
in intracellular motility. Microtubules are implicated in determin-
ing cell shape, completing mitosis, and regulating the intracellular 
transport of vesicles.53 These structures assume a relevant role in 
the secretion of lipoproteins and albumin and the release of lipids 
into bile, especially in the liver. Microfilaments are more directly 
related to bile secretion. In fact, they are normally found around 
the bile canaliculi (pericanalicular web). Many experimental 
studies have shown that microfilaments play an active role in the 
dilatation and contraction of bile canaliculi,74,75 thereby contrib-
uting to control of bile canalicular caliber and bile flow.

Intermediate filaments show a more complex architecture. 
They correspond to the epithelial cell tonofilaments of the old 
nomenclature. In the liver they show a relationship with Mallory 
bodies (the structural marker of human alcoholic liver disease). 
They are located around the nucleus, near the cell border, in the 
cytoplasmic network, and around the bile canaliculi.

The Hepatic Sinusoid
The hepatic sinusoid is a unique, dynamic, microvascular struc-
ture that serves as the principal site of exchange between the blood 
and the perisinusoidal space (i.e., space of Disse).9 The sinusoid 
is the home of nonparenchymal cells, of which there are four 
recognized types (Figs. 1-18 and 1-19; see Table 1-2)9,76:
1.	 Fenestrated sinusoidal endothelial cells, which form the sinu-

soid lining that is in contact with the blood
2.	 Phagocytic Kupffer cells, which adhere on the luminal aspect
3.	 Hepatic stellate cells, specialized pericytes that extend processes 

throughout the space of Disse and serve as myofibroblasts 
during times of hepatic injury and repair

4.	 Pit cells, which are immunoreactive natural killer (NK) cells 
that are attached to the abluminal surface of the sinusoid and 
are part of a population of liver-associated lymphocytes77

Together, the sinusoidal nonparenchymal cells represent 
approximately 6% of the total liver volume, but account for 30% 
to 35% of the total number of liver cells as measured by count of 
nuclei.78,79 Whereas sinusoidal endothelial cells have the capacity 
to divide and proliferate, especially when stimulated by immune 
system modifiers,80 sinusoidal macrophages and NK cells may also 
be increased in numbers by the respective recruitment and subse-
quent modification of monocytes and lymphocytes, principally of 
bone marrow origin.81

•	 Secondary lysosomes are functionally activated.
•	 Autophagic vacuoles contain parts of degrading cytoplasmic 

organelles and are often delimited by a double membrane.
•	 Residual bodies are larger than primary and secondary lyso-

somes and are usually more numerous in older organisms.
The residual bodies contain the residues of nondigested mate-

rial or pigments such as lipofuscins (which are considered undi-
gestible permanent residues). Lipofuscin granules are the most 
numerous lysosomal bodies present in human hepatocytes.59

Lysosomes are frequently found near the plasma membrane 
proximal to the bile canaliculus, and are capable of discharging 
their contents into the biliary space.55 The lysosomes in periportal 
hepatocytes are often larger and more positive for acid phospha-
tase than those in centrilobular hepatocytes.59,60

Peroxisomes
Peroxisomes are subcellular membrane-bound organelles that are 
usually rounded or slightly oval in shape (see Fig. 1-16), but may 
form dynamic elongated tubules several microns in length.66,67 
They participate mainly in oxidative processes, and play a key role 
in bile acid biosynthesis in the liver.51,68 Each hepatocyte may 
contain between 300 and 600 peroxisomes, characteristically 
more numerous and larger than in other mammalian cells.59 They 
contain a fine granular matrix and in some species (but not 
humans) a denser paracrystalline structure may be present. Per-
oxisomes may be more numerous in pericentral hepatocytes but 
they are generally homogeneously distributed within the hepatic 
lobule.59,60 Peroxisomes are believed to originate as a focal protru-
sion of the RER.

Cytoplasmic Contents
The hepatocyte is extremely rich in non–membrane-bound cyto-
plasmic inclusions, including glycogen granules, lipid droplets, 
and pigments of various natures.51 Glycogen granules are the most 
abundant inclusions in normal hepatocytes (see Figs. 1-15 and 
1-16).51,59 At the electron microscopy level they may occur either 
in the monoparticulate form (β particles, 15-30 nm in size) or, 
more frequently, as aggregates of smaller particles arranged to 
form “rosettes” (α particles). Glycogen granules are dispersed in 
the cytoplasm, but are often associated with the SER. Glycogen 
is depleted during fasting, disappearing first from periportal hepa-
tocytes and then from centrilobular cells. Upon refeeding, the 
sequence reverses. In this fashion, hepatocytes constitute a major 
metabolic energy reserve during fasting, thus supporting systemic 
glucose homeostasis.

Lipid inclusions appear as empty vacuoles in histologic sec-
tions, or osmiophilic droplets by transmission electron micros-
copy, and are usually not surrounded by membranes. Lipid 
droplets consist of triglycerides in their interior, and are coated 
with a monolayer of phospholipids.60 Small lipid droplets have a 
high surface/volume ratio and are accessible to cytoplasmic lipases 
that may degrade the retained triglyceride quickly.69 Large lipid 
droplets have a low surface/volume ratio, and may reside in hepa-
tocytes for long after the metabolic reasons for their deposition 
have subsided.

A variable amount of iron-containing granules are often present 
within the hepatocyte cytoplasm, which is heavily dependent 
upon the iron status of the host.70 These are usually in the form 
of ferritin particles. With an approximately spherical shape,  
the iron-containing protein ferritin consists of a protein shell 
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coursing between the hepatocyte plates. The similarity ends there, 
because sinusoidal endothelial cells do not rest on a basement 
membrane but rather form an attenuated cytoplasmic sheet 
approximately 50 nm to 80 nm in maximum thickness, perfo-
rated by numerous holes (fenestrae). Also, unlike endothelial cells 
elsewhere, hepatic sinusoidal endothelial cells apparently do not 
form junctions with adjacent endothelial cells (Figs. 1-20 and 
1-21). The sinusoidal endothelial cell fenestrae are so abundant 
that, on scanning electron microscopy, the greater part of the cell 
has a netlike appearance. Thus, the sinusoidal endothelium forms 
a porous barrier between the sinusoidal lumen and underlying 
hepatocytes, reinforced here and there where adjacent endothelial 
cells overlap one another (see Fig. 1-20).

The sinusoidal endothelial cell fenestrae vary greatly in size, 
but generally fall into two size categories: small fenestrae (0.1-
0.2 µm in diameter) grouped in clusters, forming so-called sieve 
plates; and large fenestrae (up to 1 µm in diameter) which are 
more numerous at the distal end of the sinusoid. Thus, endothelial 
cell porosity is higher in the perivenular zone than in the peripor-
tal zone.82 The smaller fenestrae traverse individual endothelial 
cells. The larger fenestrae lie between sinusoidal endothelial cells, 
and some workers consider that they may be artifacts due to fixa-
tion.83 Regardless, there is evidence that fenestrae are labile struc-
tures, whose diameter is regulated and may change in response to 
endogenous mediators (e.g., serotonin) and exogenous agents, 
such as alcohol.84 The extracellular matrix in the space of Disse 
also modulates the fenestrae. For example, lack of cell-matrix 
interaction results in loss of fenestrae in cultured sinusoidal endo-
thelial cells, whereas cells plated on human amnion basement 
membrane retain their fenestrae.85 The mechanism for active 
control of the diameters of these fenestrae appears to reside in 
actin-containing components of the sinusoidal endothelial cell 
cytoskeleton.86-89 Additional cytoskeletal components form rings 
that delineate both the fenestrae and the sieve plates.87,90 The 

Sinusoidal Endothelial Cells
Ostensibly similar to endothelial cells found in capillaries else-
where throughout the body, contiguous sinusoidal endothelial 
cells in the liver form the basic tubular vessel for conveyance of 
blood and its contents through the sinusoidal vascular channels 

• Fig. 1-18  Sinusoid wall and contiguous hepatocytes (HC). BC, Bile 
canaliculus; E, endothelium; KC, Kupffer cell; SC, stellate cell; SD, space 
of Disse; SP, sieve plate of fenestrae. (Modified from McCuskey RS. In: 
Tavoloni N, Berk PD, editors. Hepatic transport and bile secretion. New 
York: Raven Press, 1993: 6, ©1993, with permission from Lippincott Wil-
liams & Wilkins [http://lww.com].)
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• Fig. 1-19  Sinusoidal architecture. The sinusoidal lumen is shown. The 
sinusoidal endothelial cell (SEC) has an attenuated cell body that extends 
around the circumference of the lumen. A Kupffer cell (KC) is attached to 
the luminal surface and a stellate cell (SC) lies externally in the space of 
Disse. (Modified from McCuskey RS. Functional morphology of the liver 
with emphasis on its microvasculature. In: Tavoloni N, Berk PD, editors. 
Hepatic transport and bile secretion. New York: Raven Press, 1993: 6, 
©1993, with permission from Lippincott Williams & Wilkins [http://
lww.com].)
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• Fig. 1-20  Sinusoidal endothelial cell. The lumen of the sinusoid (S) is 
shown. The cell body of the sinusoidal endothelial cells contains a nucleus 
(N), and has limited perinuclear cytoplasm that contains a few organelles, 
such as mitochondria, a lysosome, and a few cisternae of endoplasmic 
reticulum. The endothelial cell rests on the hepatocyte microvilli filling the 
space of Disse. (Modified from Wisse E, et al. Structure and function of 
sinusoidal lining cells in the liver. Toxicol Pathol 1996;24:100–111, with 
permission.)
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bristle-coated pits (which are invaginations from the cell  
membrane), bristle-coated micropinocytotic vesicles, endosomes, 
transfer tubules, and lysosomes.76,100 The variety of substances 
known to be endocytosed by sinusoidal endothelial cells includes 
proteins, glycoproteins, lipoproteins, glycosaminoglycans,101-103 
and, under certain conditions, larger particulates, which are 
phagocytosed in the absence of functional Kupffer cells.104

In addition, sinusoidal endothelial cells have been demon-
strated to play a significant role in the processing and metabolism 
of lipoproteins and the removal of advanced glycation end-product 
(AGE) molecules.102,105 This process appears to be directed towards 
uptake and lysosomal degradation of compounds rather than 
providing an alternative route for their transport from the sinu-
soidal lumen to the space of Disse. A large number of endogenous 
compounds may be endocytosed, some of which are effete mol-
ecules and are cleared from the circulation and others which are 
modified and appear to undergo transcytosis to hepatocytes, 
perhaps in a more selective fashion than macromolecular solutes 
passing only through the fenestrae.99 Thus, the sinusoidal endo-
thelial cells have a role in removing soluble immune complexes 
(similar to Kupffer cells) and have also been shown to store and 
metabolize serum immunoglobulin and to remove hyaluronic 
acid/chondroitin sulphate proteoglycans from the circulation.106-108

The sinusoidal endothelial cells also have synthetic activity  
and produce proinflammatory cytokines, such as interleukin-1, 
interleukin-6, and interferon,109 nitrous oxide (NO), endothelins, 
eicosanoids, particularly prostaglandins PGI2 and PGE2, and 
thromboxane A2 (TXA2).76,102 Thus, the sinusoidal endothelial 
cells participate in host innate immunity and regulation of sinu-
soidal blood flow in the liver. In addition, sinusoidal endothelial 
cells constitutively express the intercellular adhesion molecule 
ICAM-1, which along with vascular cell adhesion molecule-1 
(VCAM-1) is up-regulated by inflammatory stimuli either in a 
direct manner or by mediators released from stimulated Kupffer 
cells, resulting in increased adhesion of leukocytes to the endo-
thelial surfaces.110 Under homeostasis, liver sinusoidal endothelial 
cells shift intrahepatic T-cell responses towards tolerance. Sinusoi-
dal endothelial cells also act as antigen-presenting cells (APCs) 
that prime naive CD4+ T cells, induce CD4+ CD25+ Foxp3+ 
regulatory T cells (Tregs)111 and immunosuppressive IL-10-
producing Th1 cells,112 and prime naive CD8+ T cells that leads 
to tolerance induction. Independent of their APC properties, 
sinusoidal endothelial cells express CD95 ligand and sinusoidal 
endothelial cell lectin (LSECtin, also known as CLEC4G), a 
ligand for CD44, that interact with activated but not resting T 
cells and inhibit T cell activation and proliferation or induce 
apoptosis. Sinusoidal endothelial cells can negatively regulate the 
APC function of neighboring dendritic cells via direct contact.113,114

Sinusoidal endothelial cells function as more than a living 
barrier between the blood and hepatocytes. They are a gatekeeper 
in the process of hepatic fibrogenesis. Capillarization of sinusoids 
with defenestration of sinusoidal endothelial cells in liver disease 
results in activation of hepatic stellate cells and induces deposi-
tion of extracellular matrix in the space of Disse. Maintenance/
restoration of sinusoidal fenestrations and prevention of capillar-
ization help preserve stellate cell quiescence and minimize/reverse 
fibrosis.115,116 Sinusoidal endothelial cells contribute to the angio-
genesis of liver regeneration through their effects on other liver 
cells117,118 and serve as master regulators by linking the processes 
of regeneration and angiogenesis through angiopoietin-2.119 Sinu-
soidal endothelial cells produce stromal-derived factor (SDF)-1 
and its receptor CXCR4, and may constitute a fundamental niche 

number of fenestrae present in the hepatic sinusoid decreases as 
the individual ages.91

The unique porous structure of the hepatic sinusoid allows the 
endothelial cells to coarsely filter the sinusoidal blood, while per-
mitting free passage of macromolecular solutes from the lumen 
into the space of Disse so as to come into contact with the baso-
lateral plasma membrane of hepatocytes. However, large particles, 
such as newly generated chylomicrons, are excluded. Transport of 
particulates somewhat larger than the size of the fenestrae is pos-
tulated to be accomplished by the forced sieving and endothelial 
massage concomitant with the passage of blood cells, particularly 
leukocytes, through the sinusoids and the resulting interaction of 
these cells with the endothelial wall.92

Sinusoidal endothelial cells show a number of phenotypic dif-
ferences compared with vascular endothelium elsewhere.93 They 
do not bind the lectin Ulex europaeus and, in most species, do 
not express factor VIII–related antigen (von Willebrand factor), 
although the cells assume these properties in chronic liver disease.94 
Furthermore, they contain absent to low levels of other molecules 
characteristically found in vascular endothelium, such as E-selectin, 
CD31, and CD34,95 but do express Fcγ IgG receptors (CD16 
and CDw32), CD4, CD14, and amino-peptidase N.96 They also 
exhibit membrane immunoreactivity for ICAM-1.96 The natural 
ligand for this adhesion molecule, LFA-1, is present on Kupffer 
cells; this receptor may therefore be involved in adhesion of 
Kupffer cells to the endothelial lining.96 Up-regulation of intercel-
lular adhesion molecule-1 (ICAM-1) expression in sinusoidal 
endothelial cells may be important in “trapping” lymphocyte asso-
ciated antigen-1 (LFA-1) positive lymphocytes in inflammatory 
liver diseases.97

Another unusual feature of sinusoidal endothelial cells is their 
high endocytotic activity.98,99 Sinusoidal endothelial cells contain 
numerous cytoplasmic vacuoles and organelles associated with  
the uptake, transport, and degradation of material. These include 

• Fig. 1-21  Sinusoid illustrating fenestrae organized in clusters as sieve 
plates (arrowheads). H, Hepatocyte; SD, space of Disse. (Reproduced 
from McCuskey RS. Functional morphology of the liver with emphasis on 
its microvasculature. In: Tavoloni N, Berk PD, editors. Hepatic transport 
and bile secretion. New York: Raven Press, 1993: 7, ©1993, with permis-
sion from Lippincott Williams & Wilkins [http://lww.com].)
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as effete erythrocytes, circulating tumor cells, and various macro-
molecules. These functions are in part carried out nonspecifically 
but they are also involved in the initiation of immunologic 
responses and the induction of tolerance to antigens absorbed 
from the gastrointestinal tract. The efficiency of this clearance 
function is shown by the fact that removal of particulate material 
is limited only by the magnitude of hepatic blood flow; removal 
of particles may approach single-pass efficiency. Kupffer cells also 
phagocytose dead hepatocytes, generated either through apoptosis 
or necrosis. Such phagocytosis occurs within hours of hepatocyte 
death,127 so that the presence of apoptotic hepatocytes in a tissue 
section is indicative of recent cell death.

Kupffer cells play a major role in the clearance of gut-derived 
endotoxins from the portal blood and this is achieved without the 
induction of a local inflammatory response. It has been estimated 
that the portal blood concentration of endotoxin varies from 
100 pg/mL to 1 ng/mL.128 The precise mechanisms involved are 
not fully understood, but there appears to be finely balanced 
autoregulation between the release of proinflammatory and 
inflammatory mediators such as interleukins 1 and 6, tumor 
necrosis factor α (TNFα) and interferon γ, and mediators such 
as interleukin-10 which suppresses macrophage activation and 
inhibits their cytokine secretions.129-131 Kupffer cells express TLR4, 
TLR2, TLR3, and TLR9 and respond to LPS. Kupffer cells act 
as both immune activating and immune regulatory cells depend-
ing on the specific situation.132,133 Recent animal studies indicated 
Kupffer cells are comprised of diverse subsets with distinct ontog-
eny and functions, but this concept has yet to be fully explored 
in humans.134

Several cytokines released by activated Kupffer cells are also 
thought to have local effects, modulating microvascular responses 
and the functions of hepatocytes and stellate cells.135 Although 
Kupffer cells can express class II histocompatibility antigens136 and 
can function in vitro as antigen-presenting cells, they appear to 
be considerably less efficient at this than macrophages at other 
sites.137 Their principal roles in the immune response therefore 
appear to be antigen sequestration by phagocytosis and clearance 
of immune complexes.138

There is firm evidence from bone marrow transplant and liver 
transplant studies that Kupffer cells are derived, at least in part, 
from circulating monocytes.139,140 However, Kupffer cells are 
capable of replication and their local proliferation accounts for a 
substantial part of the expansion of this cell population in response 
to liver injury.141,142 Furthermore, Kupffer cells appear in the fetal 
liver of the mouse before there are circulating monocytes and 
there is evidence that they are derived from primitive macrophages 
that first appear in the yolk sac.143 These data suggest that Kupffer 
cells may have a dual origin.

Stellate Cells
Within the space of Disse are stellate cells whose long cytoplasmic 
processes surround the sinusoids. Originally identified by Boll and 
von Kupffer in the 1870s, they were largely ignored until 1951 
when Ito described their morphologic features on light micros-
copy.144 They were subsequently referred to under a variety of 
terms—Ito cells, hepatic lipocytes, fat storing cells, stellate cells, and 
parasinusoidal cells.145,146 The now accepted nomenclature for them 
is hepatic stellate cells (HSCs).147

Stellate cells comprise less than 10% of total resident liver 
cells under normal conditions and are regularly spaced along 
the sinusoids (approximately 40 µm from nucleus to nucleus).148 

for regulation of hematopoietic stem cell migration to the liver 
during extramedullary hematopoiesis.120 Finally, LSECtin plays an 
important role in colorectal carcinoma metastasis to the liver.121

Kupffer Cells
Kupffer cells are hepatic macrophages and are present in the 
lumen of hepatic sinusoids (see Fig. 1-19), constituting the largest 
population of fixed macrophages in the body. They belong to  
the mononuclear phagocytic system, but manifest phenotypic 
differences that distinguish them from other macrophages. They 
are of considerable importance in host defense mechanisms and 
in addition have an important role in the pathogenesis of various 
liver diseases.122 On scanning electron microscopy, Kupffer cells 
have an irregular stellate shape,123 and within the sinusoidal lumen 
the cell body rests on the endothelial lining (Fig. 1-22). They are 
more numerous in the periportal sinusoids124 and as noted earlier 
there is some evidence that, similar to hepatocytes, Kupffer cells 
also manifest functional heterogeneity in the lobule.124,125 They do 
not form junctional complexes with endothelial cells but they may 
be found in gaps between adjacent endothelial cells and their 
protoplasmic processes may extend through the larger endothelial 
fenestrae into the perisinusoidal space of Disse. The luminal 
surface shows many of the structural features associated with 
macrophages: small microvilli and microplicae and sinuous invag-
inations of the plasma membrane.

Although Kupffer cells are considered to be fixed-tissue mac-
rophages, they appear capable of actively migrating along the 
sinusoids, both with and against the blood flow, and can migrate 
into areas of liver injury and into regional lymph nodes.126 They 
contain lysosomes and phagosomes, and the cisternae of their 
endoplasmic reticulum are rich in peroxidase. Their primary func-
tions include the removal by ingestion and degradation of particu-
late and soluble material from the portal blood, and in this they 
discriminate between “self ” and “nonself ” particles. They act as 
scavengers of microorganisms and degenerated normal cells, such 

• Fig. 1-22  Kupffer cell (KC) attached to luminal surface of sinusoidal 
endothelium. The fenestrae (F) of the sieve plates in underlying sinusoidal 
endothelial cells also are visible. (Modified from McCuskey RS. Functional 
morphology of the liver with emphasis on its microvasculature. In: Tavoloni 
N, Berk PD, editors. Hepatic transport and bile secretion. New York: 
Raven Press, 1993: 7, ©1993, with permission from Lippincott Williams 
& Wilkins [http://lww.com].)
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retinol is rapidly transferred to the stellate cells for storage by 
an as yet poorly defined transport mechanism.159 The cells 
contain a high concentration of cellular retinoid-binding 
protein and cellular retinol-acid binding protein.

2.	 They act in a pericyte-like manner around the sinusoids and 
may have a role in the control of microvascular tone in the 
normal liver.158,160 Activated stellate cells have a definite con-
tractile role in the injured liver owing to their up-regulation of 
α-SMA, and they respond to vasoactive agents such as endo-
thelin 1 and nitric oxide.

3.	 They produce extracellular matrix proteins both in the normal 
liver and when activated in the process of liver fibrogene-
sis.148,157 Healthy individuals have little or no basal lamina 
and collagen associated with the sinusoidal endothelium. As 
a result, the sinusoid wall is a highly permeable structure 
that permits continuity of plasma between the blood and the 
hepatocyte. However, with certain types of liver injury (e.g., 
cirrhosis) basement membrane material and collagen fibrils 
accumulate in the perisinusoidal space, resulting in capillariza-
tion of the sinusoid and impaired transvascular exchange.161 
Hepatic stellate cells are thought to be responsible for the 
synthesis of this material, following their transformation into 
myofibroblast-like cells having reduced numbers of fat droplets 
and vitamin A and an increased capacity to secrete extracel-
lular matrix materials, including collagen types I and III to 
VI, fibronectin, laminin, tenascin, undulin, hyaluronic acid, 
biglycan, decorin, syndecan-containing chondroitin sulfate, 
heparan, and dermatan sulphate.162

4.	 They play a role in hepatic regeneration both in the normal 
liver and in response to liver injury.163 They express hepatocyte 
growth factor163,164 and this can be enhanced in human hepatic 
stellate cells in response to insulin-like growth factor-2.

In recent years, stellate cells have emerged as a prominent deter-
minant of hepatic immunoregulation during injury. HSCs regu-
late immune function through four interrelated mechanisms:
•	 HSCs produce chemokines that facilitate inflammatory cell 

adhesion and migration into the liver.151

•	 HSCs can function as antigen-presenting cells to process 
protein antigens and present peptides to CD4+ and CD8+ T 
cells.

•	 HSCs express several pattern-recognition receptors, such as 
toll-like receptors (TLRs), and activated HSCs can induce NK 
cell activation, resulting in IFN-g production that play a role 
in the liver innate immunity.165

•	 They manifest immunosuppressive activities as bystander cells 
in the context of T cell immunity.

Overall, HSCs promote immune-suppressive responses in homeo-
stasis, like induction of regulatory T cells (Tregs), T cell apoptosis 
(via B7-H1, PDL-1) or inhibition of cytotoxic CD8 T cells.166 
HSCs are a rich source of antiinflammatory mediators IL-10 and 
TGFβ, interfere with local T cell activation and cause induction 
and proliferation of Tregs. Because HSCs form a second layer of 
cells between the bloodstream and hepatocytes, the immune regu-
latory properties of HSCs can limit the effector function of those 
T cells that have extravasated from the sinusoidal lumen, prevent-
ing tissue damage and loss of organ function. This immune regu-
latory function is so strong that HSCs are even able to promote 
pancreatic islet allograft survival if they are cotransplanted. HSCs 
not only function as immune regulatory bystander cells during T 
cell activation and Treg induction, but also during contact with 
myeloid cells: HSCs also diminish the APC function of dendritic 
cells. During chronic inflammation in the liver, HSCs facilitate 

Despite their relative scarcity, their long cytoplasmic processes can 
cover the entire perisinusoidal area. It is notable that autonomic 
nerve endings running in the space of Disse come into contact 
with stellate cells, and the stellate cells respond to α-adrenergic 
stimulation.

Hepatic stellate cells are not readily visualized on light micros-
copy, but they may be readily seen in very thin histologic sections 
or by transmission electron microscopy (Fig. 1-23). The cells 
resemble pericytes and they establish close contacts with adjacent 
hepatocytes. The nucleus of a stellate cell is frequently located 
between hepatic parenchymal cells, whereas the thin, multiple 
cytoplasmic processes of these cells course through the perisinu-
soidal space and extensively embrace, like a cylindrical basket, the 
abluminal surfaces of the sinusoidal endothelium.149 They contain 
many small lipid droplets that are rich in vitamin A. Rough 
endoplasmic reticulum and Golgi apparatus are well developed in 
these cells.

The biologic function of HSCs have been extensively 
reviewed.150-153 Under noninflammatory conditions, HSCs have 
central roles in vitamin A storage and metabolism, hepatic organ-
ogenesis, regeneration and extracellular matrix homeostasis, drug 
metabolism and detoxification, and regulating blood flow through 
the sinusoids.151 Once HSCs are activated under inflammatory 
conditions, they lose their perinuclear retinoid droplets, differen-
tiate into myofibroblasts and assume a crucial role in liver angio-
genesis,151,153-155 regeneration, and development of hepatocellular 
carcinoma.150,156 HSCs also take on the novel role of immune 
sentinels in the liver.113,151,154

Hepatic stellate cells have four main functions in the liver:
1.	 They are a major site of storage for vitamin A.157,158 Dietary 

retinyl esters reach the liver in chylomicron remnants. These 
pass from the sinusoidal lumen through the endothelial fenes-
trae and are taken up by hepatocytes. Most of the endocytosed 

• Fig. 1-23  Stellate cell lying within the space of Disse, which is 
covered by the endothelial lining. Fat droplets (asterisks) and cister
nae of the endoplasmic reticulum are located in the cytoplasm. A small 
bundle of collagen fibers (arrow) is associated with the cell. N, Nucleus, 
SD, space of Disse; S, sinusoidal lumen; F, fenestrae. (Modified from 
Wisse E, et al. Structure and function of sinusoidal lining cells in the liver. 
Toxicol Pathol 1996;24:100–111, with permission.)
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and hepatic metabolism.171,172 The role of neural elements in regu-
lating blood flow through the hepatic sinusoids, solute exchange, 
and parenchymal function is incompletely understood.173 This is 
due in part to limited investigation in only a few species, whose 
hepatic innervation may differ significantly from that of humans. 
For example, most experimental studies have used rats and mice, 
whose livers have little or no intralobular innervation. In contrast, 
most other mammals, including humans, have aminergic and 
peptidergic nerves extending from the perivascular plexus in the 
portal space into the lobule (see Fig. 1-8), where they course in 
the space of Disse in close relationship to stellate cells and hepatic 
parenchymal cells (Fig. 1-25). Although these fibers extend 
throughout the lobule, they predominate in the periportal region. 
Cholinergic innervation, however, appears to be restricted to 
structures in the portal space and immediately adjacent hepatic 
parenchymal cells. Neuropeptides have been co-localized with 
neurotransmitters in both adrenergic and cholinergic nerves. Neu-
ropeptide Y (NPY) has been co-localized in aminergic nerves 
supplying all segments of the hepatic portal venous and the 
hepatic arterial and biliary systems. Nerve fibers immunoreactive 
for substance P (SP) and somatostatin (SOM) follow a similar 
pattern of distribution. Intralobular distribution of all of these 
nerve fibers is species dependent and similar to that reported for 
aminergic fibers. Vasoactive intestinal peptide (VIP) and calcito-
nin gene-related peptide (CGRP) are reported to coexist in cho-
linergic and sensory afferent nerves innervating portal veins and 
hepatic arteries and their branches, but not the other vascular 
segments or the bile ducts. Nitrergic nerves immunoreactive for 
neuronal nitric oxide (nNOS) are located in the portal tract, 
where nNOS co-localizes with both NPY- and CGRP-containing 
fibers.

Heterogeneity
In completing this discussion of hepatic microanatomy—with 
occasional mention of structural variations of both hepatocytes 
and nonparenchymal cells from the periportal to the pericentral 
region, we must now consider the functional heterogeneity that 
occurs along the portal-to-central axis. Intralobular metabolic 
zonation creates variable cellular functions along the different 

the differentiation of inflammatory monocytes into myeloid-
derived suppressor cells (MDSCs) that impair T cell prolifera-
tion and effector function. The induction of multiple types of 
immune inhibitory cells by HSCs leads to a complex suppressive 
microenvironment.113,114

Liver-Associated Lymphocytes
Liver-associated lymphocytes (LALs) are derived from circulating 
large granular lymphocytes (LGL)167 that become attached to 
the sinusoidal wall (Fig. 1-24); LGL possess natural killer (NK) 
activity and are part of a population of LAL.77,168,169 Although 
the majority of LAL cell attachments to the sinusoidal wall are 
to endothelial cells, adhesion to Kupffer cells is not uncommon.

LALs also reside in the interstices between hepatocytes (pit 
cells). Pit cells have been shown to spontaneously kill tumor cells 
and produce a cytolytic factor that is up-regulated by biologic 
response modifiers such as zymosan, as well as by IL-2.168 These 
substances also induce proliferation of pit cells, as does partial 
hepatectomy, perhaps through the activation of Kupffer cells. 
Finally, two types of pit cell have been recognized: high density 
(HD) and low density (LD). The LD pit cells have a greater 
number of smaller granules, as compared with the granules found 
in HD cells; in addition, LD cells exhibit more cytotoxicity.170

Innervation
Aminergic, peptidergic, and cholinergic nerves are contained  
in the portal tracts and affect both intrahepatic blood flow  

• Fig. 1-24  Liver-associated lymphocyte in close contact with the endo-
thelial lining and in contact with microvilli of the underlying hepatocytes 
(arrowhead). N, Nucleus; SD, space of Disse; Ec, endothelial cell; F, fenes-
trae; S, sinusoidal lumen. (Modified from Wisse E, et al. Structure and 
function of sinusoidal lining cells in the liver. Toxicol Pathol 1996;24:100–
111, with permission.)
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exquisite. An understanding of liver function requires knowledge 
of hepatic microanatomy. Moreover, for physician and scientist 
alike, understanding the liver diseases discussed later in this 
volume is predicated on knowledge of how the different cellular 
and structural elements of the liver can become damaged and 
scarred, or repaired and regenerated. The current chapter has 
detailed both the long-documented gross, microscopic, and ultra-
structural features of hepatic anatomy, and has aimed to provide 
insights into how the cells of the liver work together to perform 
its many functions. The text has included recent advances in this 
field, primarily at the cellular biologic level. These advances, and 
current key knowledge gaps, are highlighted later.

zones within each lobule.174,175 For hepatocytes, the key enzymes 
involved in glucose uptake and release and in the formation of 
urea and glutamine are reciprocally located with glucogenic and 
urea cycle enzymes, principally in the periportal zone, and with 
glycolytic and glutaminogenic enzymes, in the centrilobular zone. 
Mixed-function oxidation and glucuronidation are mainly cen-
trilobular functions, whereas sulfation is principally a periportal 
function. This zonation of enzymatic functions also is reflected 
ultrastructurally in differences in mitochondria and smooth 
endoplasmic reticulum among different zones. As a result of this 
zonation, as well as the portal-to-central oxygen gradient, most 
toxicologic and pathologic events in the liver show a considerable 
degree of zonal preference. An example of toxicants eliciting peri-
portal injury is allyl alcohol; carbon tetrachloride and acetamino-
phen elicit centrilobular injury. Lastly, under normal conditions 
most bile formation occurs in the more proximate periportal 
regions of the lobule; with heavier bile acid loads entering the 
liver, bile acid uptake and bile secretion by hepatocytes can extend 
the length of the lobule.176

The lobular zonation of sinusoids is also manifested both struc-
turally and functionally.9,10 Near their origins from portal venules 
and hepatic arterioles, sinusoids are slightly narrower and are 
tortuous and anastomotic, forming interconnecting polygonal 
networks; farther away from the portal venules the sinusoids 
become organized as parallel vessels that converge on the terminal 
hepatic veins. Short intersinusoidal vessels connect adjacent paral-
lel sinusoids. The volume of liver occupied by sinusoids in the 
periportal area is also greater than surrounding central venules. 
However, because of the smaller size and the anastomotic nature 
of the periportal sinusoids, the surface area available for exchange 
in the periportal sinusoids (surface area/volume ratio) is greater 
than that found in centrilobular sinusoids. As previously dis-
cussed, the size and pattern of distribution of endothelial fenestrae 
differ along the length of the sinusoid. At the portal end the 
fenestrae are larger but comprise less of the endothelial surface 
area than they do in the pericentral region. The functional signifi-
cance of these regional differences is unclear.

Conclusion
Although the liver has no moving parts, the relationship of its 
microanatomy to its metabolic and physiologic function is 

SUMMARY

Recent Progress
•	 portal tract: portal fibroblasts as separate from hepatic stellate cells
•	 biliary tree: canal of Hering as a regenerative compartment
•	 cholangiocytes: cholangiocyte physiology in bile formation
•	 hepatocytes: molecular regulation of hepatocyte cellular biology; 

intracellular molecular trafficking within the hepatocyte
•	 sinusoids: understanding of the hepatic stellate cell

Key Knowledge Gaps
•	 portal tracts: formation of hepatic lymph
•	 bile ducts and cholangiocytes: continued exploration of cholangiocyte 

biology
•	 interface: triggers of regeneration at the interface
•	 hepatocytes: continued exploration of hepatocyte biology
•	 sinusoids: molecular regulation of hepatic stellate cell biology
•	 immunology: molecular immunology of the sinusoid; continued 

exploration of liver as an immunologic organ
•	 nerves: neural regulation of hepatic regeneration and repair
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Bile Acids and Bile Flow: New  
Functions of Old Molecules
KENNETH D.R. SETCHELL AND ROHIT KOHLI

Introduction
The importance of bile acid synthesis and metabolism to normal 
physiology and pathophysiologic states is well established. For a 
long time these small and relatively simple molecules, constructed 
on a steroid backbone, have been considered essential for choles-
terol metabolism and bile flow and important for micelle forma-
tion for absorption of fats in the small intestine. More recently, 
bile acids have been further recognized as signaling molecules that 
regulate metabolism.1-4 This chapter provides an overview of the 
pathways of bile acid synthesis and metabolism. It will focus on 
specific inborn errors in bile acid synthesis because these highlight 
the important role of bile acids in maintaining hepatic bile flow 
and as signaling integrators of metabolism.

Pathways of Bile Acid Synthesis  
From Cholesterol
Structurally, bile acids possess a cyclopentanoperhydrophenan-
threne (ABCD ring) nucleus and therefore belong to the chemical 
class of steroids.5 They differ from steroid hormones and neutral 
sterols, such as cholesterol, in having a five-carbon-atom side 
chain with a terminal carboxylic acid (Fig. 2-1). Bile acids are 
synthesized in the liver from cholesterol by a complex series of 
reactions catalyzed by 17 different hepatic enzymes located in the 

endoplasmic reticulum, mitochondria, cytoplasm, and peroxisomes. 
Consequently there is considerable trafficking of intermediates 
between these subcellular compartments. Several of the enzymes 
are also found in extrahepatic tissues.6,7 The enzymes involved in 
bile acid biosynthesis have all been isolated and well characterized 
in pioneering work performed in the late 1960s and the 1970s. 
More recently the role that each enzyme plays in the regulation 
of bile acid synthesis has been elucidated from studies of gene 
knockout animal models and humans with genetic defects in bile 
acid synthesis. Complementary (c)DNAs have now been described 
for these enzymes,7 including the rate-limiting enzyme in the 
bile acid biosynthetic pathway, cholesterol 7α-hydroxylase,8 and 
these have provided important tools to examine the regulation of 
bile acid synthesis and to confirm genetic defects in bile acid 
synthesis.

Conjugated (glycine and taurine) cholic and chenodeoxycho-
lic acids are the two primary bile acids synthesized in humans, 
but there is considerable variability in the qualitative pattern of 
bile acid synthesis among animal species.9 Rodents synthesize 
mostly cholic acid and the 6β-hydroxylated bile acid, β-
muricholic (3α6β.7β-trihydroxy-5β-cholanoic acid), and these 
are predominantly taurine conjugated, whereas pigs synthesize  
a 6α-hydroxylated bile acid, hyodeoxycholic (3α,6α-dihydroxy-
5β-cholanoic acid) and 6-oxo-lithocholic acid. Such differences 
need to be considered when working with different species and 
animal models of disease.

Although there is a tendency to illustrate the reactions in the 
bile acid synthetic pathway to occur in a linear fashion (Fig. 2-2), 
moving from initiation of changes to the steroid nucleus through 
modification of the side chain, in reality there is considerable 
substrate promiscuity for the 17 enzymes catalyzing the various 
reactions, which consequently results in vast number of different 
bile acids and intermediates being synthesized.6 This is especially 
evident during early development, a period of physiologic cho-
lestasis,10,11 and in pathologic conditions that interfere with the 
integrity of the enterohepatic circulation. Furthermore, intestinal 
bacterial modifications, resulting in the formation of “secondary” 
bile acids, add a further level of complexity to the bile acid com-
position of biologic fluids.12

There are two main pathways leading to primary bile acid 
synthesis.13-15 These are termed the neutral and acidic path
ways, the former being the classic one that is initiated by the 
rate-limiting cytochrome P450 liver-specific enzyme, cholesterol 
7α-hydroxylase (CYP7A1) leading to cholic acid synthesis,16 and 
the latter being initiated by the action of cholesterol 27-hydroxylase 

A B B R E VAT I O N S
ACOX  acyl-CoA oxidase
ASBT  apical sodium bile acid transporter
CTX  cerebrotendinous xanthomatosis
FAB-MS  fast atom bombardment ionization mass spectrometry
GC-MS  gas chromatography−mass spectrometry
GGT  γ-glutamyltranspeptidase
LDL  low-density lipoprotein
LSIMS  liquid secondary ionization mass spectrometry
PFIC  progressive familial intrahepatic cholestasis
TUDCA  taurine-conjugated form of ursodeoxycholic acid
UDCA  ursodeoxycholic acid
VLCFA  very long chain fatty acids
VSG  vertical sleeve gastrectomy
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25-hydroxycholesterol,20,23,30,32 on the bile acids 3β-hydroxy-5-
cholenoic and 3β-hydroxy-5-cholestenoic acids,30 and also on C19 
steroids.35 The CYP7B1 gene is localized to chromosome 8q21.3 
and in close proximity to the CYP7A1 gene. Genetically engineered 
Cyp7b1 (−/−) mice lacking this enzyme have elevated levels of 
27- and 25-hydroxycholesterol, but not 24-hydroxycholesterol.36 
Similarly, extremely high levels of 27-hydroxycholesterol and the 
hepatotoxic monohydroxy bile acids hepatotoxic monohydroxy 
bile acid 3β-hydroxy-5-cholenoic and 3β-hydroxy-5-cholestenoic 
acids were found in an infant with a genetic defect in oxysterol 
7α-hydroxylase.29 A mutation in the CYP7B1 gene will cause a 
phenotype of progressive and fatal liver disease29,37,38 and indi-
cates the quantitative importance of the acidic pathway in early 
human life.

Following the synthesis of 7α-hydroxycholesterol, modifica-
tions to the steroid nucleus take place; these result in oxidoreduc-
tion and C-12 hydroxylation, consequently preparing the sterol 
intermediates for direction into either the cholic acid (3α,7α,12α-
trihydroxy-5β-cholan-24-oic) or chenodeoxycholic acid (3α,7α-
dihydroxy-5β-cholan-24-oic) pathways. According to convention, 
7α-hydroxycholesterol is converted to 7α-hydroxy-4-cholesten-3-
one, a reaction catalyzed by a microsomal NAD-dependent 
3β-hydroxy-Δ5-C27-steroid oxidoreductase (HSD3B7) enzyme 
(C273β-HSD), formerly referred to as a 3β-hydroxy-Δ5-C27-steroid 
dehydrogenase/isomerase.39 This enzyme shows substrate specific
ity toward 7α-hydroxylated sterols and bile acids possessing 
a 3β-hydroxy-Δ5 nucleus and is inactive on 7β-hydroxylated 
analogs. Comparable reactions occur in steroid hormone synthe-
sis; however, the enzyme active on bile acid intermediates is a 
distinct single enzyme that shows absolute specificity toward C27-
sterols,39 differing from the isozymes active on C19 and C21 neutral 
steroids. 3β-Hydroxy-Δ5-C27-steroid oxidoreductase is not exclu-
sive to the liver but is also expressed in fibroblasts, which enables 
its activity to be determined in patients with a genetic defect in 
this enzyme.40 Mutations in the gene encoding this enzyme are 
associated with progressive intrahepatic cholestasis,41,42 and this is 
often the cause of late-onset chronic cholestasis.

12α-Hydroxylation of the product of the above reaction will 
direct the Δ4-3-oxo intermediate into the cholic acid pathway. 
This reaction is catalyzed by a liver-specific microsomal cyto-
chrome P450 12α-hydroxylase (CYP8B1), which is highly expressed 
in rabbit and human liver, two species where deoxycholic acid is 
quantitatively important.43 When the gene encoding this enzyme 
is knocked out in mice, there is loss of cholic acid and reduced 
cholesterol absorption.7 The primary structures of the rabbit, 
mouse, and human enzymes have been established by molecular 
cloning of their cDNAs.43,44 The activity of 12α-hydroxylase 
enzyme determines the relative proportion and synthetic rate of 
cholic relative to chenodeoxycholic acids and appears in humans 
to be up-regulated by interruption of the enterohepatic circulation 
and in animals by starvation.45 It is possible that in utero there 
may be reduced activity of this enzyme because fetal bile has a 
predominance of chenodeoxycholic acid.46 In contrast, the ratio 
of cholic acid to chenodeoxycholic acid is very high in neonatal 
bile47 compared with adult bile.48 The neonatal period of life is 
associated with a phase of physiologic cholestasis,10 which may 
lead to an up-regulation in 12α-hydroxylase activity with a con-
sequent increase in cholic acid synthesis.

7α-Hydroxy-4-cholesten-3-one and 7α,12α-dihydroxy-4-
cholesten-3-one both undergo reduction with formation of a 
3-oxo-5β(H)-structure, and this generates the basic trans configu-
ration of the A/B-rings of the steroid nucleus that is common  

(CYP27A1) on the side chain to yield chenodeoxycholic acid.17 
This acidic pathway leads to the formation of 3β-hydroxy-5-
cholenoic and lithocholic acids as intermediates to chenode-
oxycholic acid. These markedly hepatotoxic monohydroxy-bile 
acids are increased in early life and in cholestatic liver diseases. 
27-Hydroxylation occurs in the liver and in many other tissues, 
including brain, alveolar macrophages, vascular endothelia, and 
fibroblasts,18-20 and its extrahepatic role appears related to the cel-
lular regulation of cholesterol homeostasis by its ability to generate 
oxysterols that are potent repressors of cholesterol synthesis.21-23 It 
is now accepted that the acidic pathway contributes significantly 
to overall total bile acid synthesis, and especially to chenode
oxycholic acid synthesis.14,21 Normal levels of bile acids are 
synthesized in mice even when the gene encoding cholesterol 
7α-hydroxylase is knocked out, and bile acid synthesis is sus-
tained in rats when cholesterol 7α-hydroxylase is inhibited by 
continuous infusion of squalestatin.24 However, Cyp7a1−/− mice 
die within the first few weeks of life from liver failure and the 
consequences of fat-soluble vitamin malabsorption,25,26 unless 
fat-soluble vitamins and cholic acid are fed to these animals 
immediately after birth.27 Despite being deficient in cholesterol 
7α-hydroxylase, primary bile acid synthesis occurs via the devel-
opmental expression of an oxysterol 7α-hydroxylase (CYP7B1) 
specific to the acidic pathway,28 and this enzyme is essential in early 
human life to protect the liver from hepatotoxic monohydroxy-
bile acids that are formed as intermediates in this pathway.29 
The aforementioned examples show that primary bile acid syn-
thesis is not exclusively dependent on cholesterol 7α-hydroxylase, 
and under certain conditions, alternative pathways are induced. 
For some time it was evident that there were a number of 
different 7α-hydroxylases.30-32 This was confirmed by Russell et al. 
following the isolation and characterization of the oxysterol 
7α-hydroxylases, CYP7B1 and CYP39A1.7,33 CYP7B1 has high 
activity in human liver and is also found in brain, kidney, and 
prostate, but its regulation is not fully understood.34 It has broad 
substrate specificity, being active on the oxysterols, 27- and 

• Fig. 2-1  The 5β-cholanoic acid nucleus that is the basic structure of 
C24-bile acids of mammalian species. Shown are the cyclopentanoper-
hydrophenanthrene (ABCD) rings, the numbering system for the carbon 
atoms, and the metabolic sites of substitution of functional groups occur-
ring under normal and pathophysiologic conditions. Unsaturation can also 
occur in the nucleus (mainly at positions Δ4, Δ5) and in the side chain. The 
smaller font size signifies the relative quantitative importance of the con-
jugation reactions. 
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• Fig. 2-2  Metabolic pathways leading to the formation of the primary bile acids of cholic and che-
nodeoxycholic acids from cholesterol. Enzymes catalyzing the individual reactions are indicated by 
italics. Those enzymes where inborn errors in bile acids synthesis have been identified are highlighted. 
The intermediate sterol-C4 is highlighted as it provides a surrogate marker for bile acid synthesis. The 
broken arrows indicate multiple steps in the conversion. Shaded areas are the classic (neutral) pathway, 
the acidic pathway, and several alternative pathways. 
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to the majority of bile acids in most mammalian species. Allo(5α-
H)-bile acids49 are often major bile acid species of lower verte-
brates but are found in small proportions in biologic fluids from 
humans. These are formed by an analogous reaction but catalyzed 
by a hepatic 5α-reductase. The Km of 5α-reductase is high, and 

consequently under normal conditions 5β-reduction is favored. 
The Δ4-3-oxosteroid 5β-reductase, a cytosolic aldo-keto reductase 
(AKR1D1), is a protein of approximately 38 kDa comprising  
326 amino acids.50 It differs significantly in structure from 
the 5α-reductase and has broad substrate specificity. Its crystal 
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by measuring the production of [14C]acetone after labeling the 
cholesterol pool with [26-14C]cholesterol.69 This approach showed 
that the C-25 hydroxylation pathway accounted for less than 5% 
of the total bile acids synthesized in healthy adults and less than 
2% in adult rats. Hydroxylation of cholesterol also occurs at the 
C-24 and C-25 positions in addition to the aforementioned cho-
lesterol 27-hydroxylation to yield oxysterols, which are potent 
repressors of cholesterol synthesis. Cholesterol 24-hydroxylase 
(CYP46A1) is expressed in the brain to a greater extent than in 
the liver where it is considered to play a role in cholesterol secre-
tion. In gene knockout mouse models of cholesterol 24- and 
25-hydroxylases, bile acid synthesis is unaffected.7

The cholestanoic acids are next converted to CoA esters by the 
action of a bile acid–CoA ligase (synthetase) of which two forms 
have been identified: one activates newly synthesized C27 choles-
tanoic acids, and the other activates cholanoic acids formed as 
secondary bile acids returning to the liver for reconjugation.70 
The product of this reaction is the formation of the CoA esters  
of (25R)-3α,7α-dihydroxy-cholestanoic and (25R)-3α,7α,12α-
trihydroxy-cholestanoic acids. The (25R)-diastereoisomers must 
be racemized to their (25S)-forms in order to penetrate the peroxi-
some for subsequent oxidation. This reaction is catalyzed by a 
2-methylacyl coenzyme A racemase enzyme, the same enzyme 
that is also active on branched-chain fatty acids such as phytanic 
acids. A mutation in the gene encoding this enzyme leads to the 
accumulation of (25R)-cholestanoic acids and phytanic acids and 
presents with neurologic and liver disease.71,72

The final stage in modification of the side chain involves the 
β-oxidation of the cholestanoic acids, which occurs by a multiple-
step reaction within peroxisomes.61 The sequence of these reac-
tions is analogous to the β-oxidation of fatty acids. The CoA esters 
of the cholestanoic acid are acted on by a specific peroxisomal 
acyl-CoA oxidase (ACOX2). This reaction is rate limiting, and 
the enzyme has been partially purified from rat liver and found 
to differ from the analogous acyl-CoA oxidase (ACOX1) utilizing 
fatty acids as substrates.73 The situation in humans is somewhat 
different in that a single peroxisomal oxidase acts on both 
branched-chain fatty acids and bile acid intermediates.74 Forma-
tion of a C-24 hydroxylated derivative occurs by the action of a 
bifunctional enoyl-CoA hydratase/β-hydroxyacyl-CoA dehydro-
genase, a reaction that goes through a Δ24-intermediate. Photoaf-
finity labeling experiments have shown that this enzyme is the 
same one that is involved in the peroxisomal β-oxidation of fatty 
acids. The dehydrogenase activity of the bifunctional enzyme 
yields a 24-oxo derivative that, following thiolytic cleavage by 
peroxisomal thiolase 2, releases three carbon atoms in the form of 
propionic acid.75 This results in the formation of the C24 bile acid 
CoA end product. With the exception of the acyl-CoA oxidase, 
defects in any of the other enzymes responsible for the β-oxidation 
of very-long-chain fatty acids (VLCFAs) exhibit abnormalities in 
primary bile acid biosynthesis.6

Some mention of allo (5α-reduced)-bile acids is warranted 
even though under physiologic conditions they account for a rela-
tively small proportion of the total bile acids in human biologic 
fluids. These are major bile acid species of many lower verte-
brates.9,49 In humans, 5α-reduced bile acids are usually formed by 
the action of intestinal microflora on 3-oxo-5β-bile acids during 
their enterohepatic circulation and consequently are found in 
significant amounts in feces.12 In rodents, these 5α-reduced bile 
acids can be formed in the liver from 5α-cholestanol.76 This 
pathway begins with 7α-hydroxylation of 5α-cholestanol and 
the product is then converted to 5α-cholestane-3α, 7α-diol 

structure,51 and the effect of a number of point mutations on 
the substrate binding sites and enzyme activity, was recently 
reported.52,53 Although under normal conditions this enzyme does 
not appear to be of regulatory importance for bile acid synthesis, 
its activity parallels the activity of cholesterol 7α-hydroxylase, and 
therefore measurement of the plasma concentration of 7α-hydroxy-
4-cholesten-3-one (often referred to as C4, or sterol C4, see Fig. 
2-2) can be used as an indirect assessment of hepatic cholesterol 
7α-hydroxylase activity.54 The finding of elevated proportions 
of 3-oxo-Δ4 bile acids in biologic fluids during early life55 and 
in advanced cholestatic liver disease56 suggests that under patho-
logic conditions it is this enzyme that becomes rate limiting for 
bile acid synthesis, rather than cholesterol 7α-hydroxylase. Muta-
tions in the gene encoding AKR1D1 are clinically manifest as 
progressive intrahepatic cholestasis and biochemically by the pro-
duction of large amounts of C24-3-oxo-Δ4-bile acids and allo-bile 
acids.52,57-59

The enzyme catalyzing the conversion of the 3-oxo-5β(H)-
sterols to the corresponding 3α-hydroxy-5β(H) intermediates is 
a soluble 3α-hydroxysteroid dehydrogenase (AKR1C4).60 This 
enzyme catalyzes the oxidoreduction of a number of substrates, 
and several cDNA clones with sequence similarity to other aldo-
keto reductases have been described, which suggests the existence 
of multiple isozymes. This final step in modification of the steroid 
nucleus results in the formation of the key intermediates, 
5β-cholestane-3α,7α-diol and 5β-cholestane-3α,7α,12α-triol 
(bile alcohols), which then undergo a sequence of reactions 
leading to side chain oxidation and consequent shortening by 
three carbon atoms (see Fig. 2-2).

The initial step in side chain oxidation of the bile alcohols 
involves hydroxylation of the C-27 carbon atom,61 a reaction that 
is catalyzed by a mitochondrial cytochrome P450 27-hydroxylase 
(CYP27A1)62 and leads to the formation of 5β-cholestane-
3α,7α,12α,27-tetrol. It is now known that CYP27A1 is also 
responsible for the complete oxidation reaction, which yields 
directly 3α,7α,12α-trihydroxy-5β-cholestanoic acid.63 5β-
Cholestane-3α,7α,12α,27-tetrol may also undergo oxidation by 
the combined actions of soluble or mitochondrial alcohol and 
aldehyde dehydrogenases, but the relative importance of these reac-
tions compared with the complete 27-hydroxylase-catalyzed reac-
tion is not known.61 cDNAs encoding the rat, rabbit, and human 
sterol 27-hydroxylase have been isolated. This enzyme is expressed 
in many extrahepatic tissues, and its function appears to be impor-
tant in facilitating the removal of cellular cholesterol. It shows 
substrate specificity toward many sterols, including cholesterol and 
vitamin D, and is the same enzyme that catalyzes the formation of 
27-hydroxycholesterol, the first step in the acidic pathway. When 
the sterol 27-hydroxylase gene is disrupted in the mouse,64 bile acid 
synthesis is markedly reduced; however, mutations in this gene  
that cause the rare lipid storage disease of cerebrotendinous xan-
thomatosis (CTX) have only a modest effect on bile acid synthesis, 
partly because alternative pathways for bile acid synthesis support 
the production of compensatory levels of cholic acid.65,66

Studies using radiolabeled precursors have shown that 5β-
cholestane-3α,7α,12α-triol can be first 25-hydroxylated in the 
microsomal fraction, then 24β-hydroxylated, and finally oxidized 
to cholic acid.13,67 This pathway is specific for cholic acid because 
little or no hydroxylation of 5β-cholestane-3α,7α-diol has been 
demonstrated. Based on studies of patients with CTX, it was 
proposed that the C-25 hydroxylation pathway may be a major 
pathway for cholic acid synthesis in humans.68 The quantitative 
importance of this pathway was later reevaluated in vivo 
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acids97 and homo(C25)–bile acids, are both poor substrates for 
amidation.87,97,98 In contrast, cholestanoic (C27) acids are predomi-
nantly taurine conjugated. Significant species differences in sub-
strate specificity are observed and should be considered when 
working with animal models. The human bile acid-CoA:amino 
acid N-acyltransferase conjugates cholic acid with both glycine 
and taurine; whereas the mouse enzyme shows selectivity only 
toward taurine. This is consistent with the mouse being an obli-
gate taurine conjugator of bile acids, as is the rat and the dog. In 
humans, the final products of this complex multistep pathway are 
the two conjugated primary bile acids of cholic and chenodeoxy-
cholic acids (see Fig. 2-2), and these are then secreted in canalicu-
lar bile and stored in gallbladder bile. In humans, glycine 
conjugation predominates with a ratio of glycine to taurine con-
jugates of 3.1 : 1 for normal adults.48 In early human life, more 
than 80% of the bile acids in bile are taurine conjugated due to 
the abundance of hepatic stores of taurine.46

Although the principal bile acids of humans and most mam-
malian species are amidated, other conjugates occur naturally  
and these include sulfates,99 glucuronide ethers and esters,100,101 
glucosides,102 N-acetylglucosaminides,103 and conjugates of some 
drugs.104 These conjugates account for a relatively large proportion 
of the total urinary bile acids. Conjugation significantly alters the 
physicochemical characteristics of the bile acid,94,105 and it serves 
an important function by increasing the polarity of the molecule, 
thereby facilitating its renal excretion, and by minimizing the 
membrane-damaging potential of the more hydrophobic uncon-
jugated species.106 Under physiologic conditions, these alternative 
conjugation pathways are quantitatively less important. However, 
in cholestatic liver disease, or when the liver is subjected to a bile 
acid load, as in ursodeoxycholic acid (UDCA) therapy, the con-
centrations of these conjugates in biologic fluids may change. 
Detailed knowledge of these metabolic pathways is limited, but 
it is evident that there is significant localization of bile acid-
conjugating enzymes in the kidneys.107

Sulfation of bile acids, most commonly at the C-3 position but 
also at C-7, is catalyzed by a bile acid sulfotransferase,108,109 an 
enzyme that in the rat, not in the human, exhibits sex-dependent 
differences in activity. Although much has been written about the 
potential importance of sulfation in early life, it is evident from 
the finding of a relatively small proportion of bile acid sulfates in 
fetal bile that hepatic sulfation is negligible in the fetus and 
neonate.46 Indeed, it is most probable that urinary bile acid sul-
fates originate mainly by renal sulfation107; 60% to 80% of urinary 
bile acids are sulfated and their excretion increases in cholestasis. 
Only traces of bile acid sulfates are found in bile despite efficient 
canalicular transport of perfused bile acid sulfates.

A number of glucuronosyltransferases catalyze the formation 
of glucuronide ethers and esters.100,101 The enzymes show substrate 
selectivity in that bile acids possessing a 6α-hydroxyl group are 
preferentially conjugated at the C-6 position forming 6-O-ether 
glucuronides,101 whereas short-chain bile acids form mainly gluc-
uronides.100 Purification of the hyodeoxycholic acid-specific 
human UDP-glucuronosyltransferase and subsequent cloning of 
a cDNA110 indicate that this enzyme is highly specific toward 
hyodeoxycholic (3α,6α-dihydroxy-5β-cholanoic) acid; no glu
curonidation of hyocholic (3α,6α,7α-trihydroxy-5β-cholanoic) 
acid could be detected. It is probable that there is a family of 
isozymes that catalyze the glucuronidation of different bile acids.

Glucosides and N-acetylglucosaminides of nonamidated and 
amidated bile acids have been identified in normal human urine111 
with quantitative excretion comparable to that of glucuronide 

via the intermediate 7α-hydroxy-5α-cholestan-3-one. Hepatic 
12α-hydroxylation of 5α-sterols is very efficient in the rat and 
readily leads to formation of allo-cholic acid.76,77 A further pathway 
for allo-bile acid formation involves the hepatic 5α-reduction 
of 7α-hydroxy- and 7α,12α-dihydroxy-3-oxo-4-cholen-24-oic 
acids, a reaction catalyzed by a Δ4-3-oxosteroid 5α-reductase, and 
the finding of large proportions of allo-bile acids in infants with 
severe cholestatic liver disease due to a AKR1D1 deficiency indi-
cates these to be primary bile acids of hepatic origin in humans.57 
Both 5α-reductase isozymes are expressed in the liver beginning 
from birth.78

A striking feature of bile acid synthesis and metabolism during 
early life is the relatively large proportion of polyhydroxylated, 
unsaturated, and oxo-bile acids that are synthesized and not typi-
cally found in the biologic fluids of healthy adults.46,79 Although 
frequently referred to as atypical, this moniker is a misnomer 
because they are in fact very typical of the developmental phase 
of hepatic metabolism. Interestingly, the qualitative and quantita-
tive bile acid composition of biologic fluids in early life closely 
resembles that of adults with severe cholestatic liver disease, sug-
gesting that in the diseased liver there is a reversion to more 
primitive pathways of synthesis and metabolism.46,79 The most 
notable distinction in ontogeny is the prevalence of cytochrome 
P450 hydroxylation pathways33 that rapidly decline in importance 
over the first year of life. The most important hydroxylation reac-
tions are 1β-, 4β-, and 6α-hydroxylation that are of hepatic 
origin.80-82 The concentrations of several of the metabolites, in 
particular hyocholic (3α,6α,7α-trihydroxy-5β-cholanoic) and 
3α,4β,7α-trihydroxy-5β-cholanoic acids, exceed that of cholic 
acid in fetal bile.46 The role of these hydroxylation pathways is 
uncertain, but additional hydroxylation of the bile acid nucleus 
will increase the polarity of the bile acid and facilitate its renal 
clearance, while also decreasing its membrane-damaging poten-
tial. In early life, and particularly in the fetus, an immaturity in 
canalicular and ileal bile acid transport processes leads to a slug-
gish enterohepatic circulation11 and hydroxylation serves as a 
hepatoprotective mechanism.

Bile Acid Conjugation
Irrespective of the pathway by which cholic and chenodeoxycholic 
acids are synthesized, the CoA thioesters of these primary bile 
acids are ultimately conjugated to the amino acids glycine and 
taurine.48 This two-step reaction is catalyzed by a rate-limiting bile 
acid-CoA ligase enzyme83-85 followed by a bile acid CoA:amino 
acid N-acyltransferase (EC 2.3.1.65).86,87 The genes encoding 
both enzymes, SLC27A5 and BAAT, were cloned decades ago.88,89 
The conjugation reaction was originally believed to take place in 
the cytosol, but the highest activity of conjugating enzymes was 
later found to be in peroxisomes.90,91

Genetic defects in the bile acid amidation have been associated 
with fat-soluble vitamin malabsorption states with variable degrees 
of liver disease.92-95 Recently, we identified and treated five patients 
(one male, four females) from four families with defective bile 
acid amidation caused by a genetically confirmed deficiency in 
BAAT with the conjugated bile acid, glycocholic acid.96 The bile 
acid CoA:amino acid N-acyltransferase enzyme utilizes glycine, 
taurine, and interestingly β-fluoroalanine, but not alanine, as 
substrates.86 It will also conjugate VLCFAs to glycine. The speci-
ficity of the enzyme has been examined in detail and found to be 
influenced by the length of the side chain of the bile acid; bile 
acids having a four-carbon-atom side chain, that is, nor(C23)–bile 
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this reaction exhibit remarkable substrate specificity in that the 
length of the side chain is a crucial factor influencing this reaction. 
The enzyme kinetics, factors influencing the reactions, and molec-
ular biology of a number of the bacterial enzymes have been 
extensively studied by Stellwag et al118a and Coleman et al.118b 
7α-Dehydroxylation of cholic and chenodeoxycholic acids, a reac-
tion that proceeds via a 3-oxo-Δ4-intermediate, results in the 
formation of deoxycholic and lithocholic acids, respectively, and 
these secondary bile acids make up the largest proportion of total 
fecal bile acids.12 Lithocholic and deoxycholic acids are relatively 
insoluble and consequently poorly absorbed. However, both bile 
acids are returned to the liver to regulate bile acid synthesis. It 
should be noted that in rats, deoxycholic acid is very efficiently 
7α-hydroxylated in the liver and converted back to cholic acid, 
but this reaction does not take place in humans. Serum concentra-
tions of deoxycholic acid therefore provide a useful means of 
assessing the extent of impairment of the enterohepatic circulation 
in cholestatic liver diseases.119 Recent interest in gut dysbiosis with 
respect to gastrointestinal and systemic disease has further linked 
the dysmetabolism of bile acids to changes in the so-called 
gut-microbiome.120,121

Regulation of Bile Acid Synthesis
The major factor influencing bile acid synthesis is negative  
feedback by bile acids returning to the liver via the portal vein 
during their enterohepatic recycling. There are marked differences 
in the ability of different bile acids to regulate cholesterol 
7α-hydroxylase.122 For example, whereas the primary bile acids 
cholic and chenodeoxycholic acids down-regulate synthesis, bile 
acids possessing a 7β-hydroxy group, such as ursodeoxycholic 
acid, do not, and the latter may actually increase synthesis rates. 
This observation has relevance to the treatment of inborn errors 
of bile acid synthesis. Interruption of the enterohepatic circulation 

conjugates.112 A microsomal glucosyltransferase has been isolated 
and purified from human liver102 but is also present in extrahe-
patic tissues. The enzyme responsible for N-acetylglucosaminide 
formation exhibits remarkable substrate specificity in that it  
preferentially catalyzes the conjugation of bile acids having a 
7β-hydroxyl group and consequently these conjugates account for 
more than 20% of the urinary metabolites of patients adminis-
tered ursodeoxycholic acid.113 Finally, the full extent to which 
drugs may compete for the conjugating enzymes is not known, 
although bile acid conjugates of 5-fluorouracil have been identi-
fied. The 2-fluoro-β-alanine conjugate of cholic acid was found 
to be a major metabolite in bile following administration of this 
therapeutic agent.104

Formation of Secondary Bile Acids
Intestinal microflora play an important role in bile acid synthesis 
and metabolism. Bacterial enzymes metabolize primary bile acids, 
altering significantly their physicochemical characteristics and 
influencing their physiologic actions during enterohepatic recy-
cling. The result is the formation of a spectrum of secondary bile 
acids that are mainly excreted in feces12 (Fig. 2-3). Deconjugation 
of conjugated bile acids, followed by 7α-dehydroxylation, are 
quantitatively the most important reactions, but bacterial oxido-
reduction and epimerization at various positions of the bile acid 
nucleus also take place along the intestinal tract.114 This is evident 
from bile acid profiles along the entire length of the human intes-
tine obtained at autopsy that show relatively high proportions of 
secondary bile acids in the proximal jejunum, mid-small bowel, 
ileum, and cecum.115,116 The enzymes that catalyze these reactions 
are found in a variety of organisms, such as Bacteroides, Clostridia, 
Bifidobacteria, Escherichia coli, and some of these reactions occur 
in the proximal small intestine.117,118 Deconjugation precedes 
7α-dehydroxylation, and the bacterial peptidases responsible for 

• Fig. 2-3  The main reactions of intestinal microbiome in the metabolism of bile acids. Conversion of 
primary bile acids secreted in bile into secondary bile acids excreted in feces. 
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it can be difficult to determine whether such changes are primary 
or secondary to the liver dysfunction. The first bile acid synthetic 
defect causing liver disease was discovered as a result of applying 
the liquid secondary ionization mass spectrometry (LSIMS) tech-
nique of fast atom bombardment ionization mass spectrometry 
(FAB-MS).134 This permitted the direct analysis of bile acids from 
a small drop of urine. Whereas FAB-MS is still a definitive tech-
nique for diagnosing bile acid synthetic defects, newer mass spec-
trometric approaches have since been used, including electrospray 
ionization tandem mass spectrometry135,136 and gene sequencing 
techniques. However, mass spectrometry continues to offer the 
fastest and most accurate method of screening for these disorders 
because the mass spectra generated permit accurate identification 
of the lack of primary bile acids and presence of atypical bile acids 
specific to each defect.134 To date, nine defects in bile acid synthe-
sis have been describedi (see Fig. 2-2), and all have a highly vari-
able phenotypic expression of familial and progressive infantile or 
late-onset cholestasis, of syndromes of fat-soluble vitamin malab-
sorption, and of variable degrees of neurologic involvement (Fig. 
2-4). An international screening program at Cincinnati Children’s 
Hospital Medical Center found bile acid synthesis defects to 
account for 2% of 13,500 screened cases of idiopathic cholestatic 
liver disease in infants and children. Broadly, these defects can be 
categorized as deficiencies in the activity of enzymes responsible 
for catalyzing reactions to the steroid nucleus or to the side chain.

Defects Involving Reactions  
to the Steroid Nucleus
Three defects involving enzyme-catalyzing reactions that modify 
the ring structure of the steroid nucleus have been identified. 
Two reports of a 12α-hydroxylase (CYP8B1) defect have been 
proposed, but neither has been definitively confirmed.139 The clin-
ical presentations of the 3β-hydroxy-Δ5-C27-steroid oxidoreduc-
tase (HSD3B7), Δ5-3-oxosteroid 5β-reductase (AKR1D1), and 

by biliary diversion123 or the feeding of anion exchange resins that 
bind bile acids in the intestinal lumen124 results in an up-regulation 
of cholesterol 7α-hydroxylase activity. In general, factors that 
influence cholesterol 7α-hydroxylase activity cause concomitant 
changes in the activity of HMG-CoA reductase, the rate-limiting 
enzyme for cholesterol synthesis, and this serves to regulate cho-
lesterol synthesis and maintain a constant cholesterol pool size. 
Interestingly, cholesterol 7α-hydroxylase exhibits a diurnal rhythm 
that is synchronous with the activity of HMG-CoA reductase and 
is reflected by diurnal changes in bile acid synthesis rates.125 A 
significant nocturnal rise in bile acid synthesis takes place that 
may be regulated by glucocorticoids because this regulation can 
be abolished by adrenalectomy or hypophysectomy.

The mechanism involved in regulating cholesterol 7α-
hydroxylase activity and therefore bile acid synthesis is complex 
and mediated through an ever-increasing discovery of nuclear 
receptors and transcription factors that have specificity for bile 
acids and oxysterols.1,7,126-128 Bile acids have been shown to enter 
the nucleus of the hepatocyte, and nuclear concentrations increase 
with bile acid feeding.129 These nuclear receptors include the 
farnesoid X receptor (FXR, NHR1H4), short heterodimer partner 
(SHP, NR0B2), liver receptor homolog-1 (LRH-1, NR5A2), 
hepatocyte nuclear factor 4α (HNF-4α), liver X receptor α 
(LXRα, NR1H3), pregnane X receptor (PXR, NR112), constitu-
tive androgen receptor (CAR, NR13), and fibroblast growth 
factor-19 (FGF19) and its receptor FGFR4,130 and the G protein–
coupled receptor TGR5.131 Much has been learned about the 
regulation of cholesterol and bile acid synthesis from gene knock-
out models of these nuclear receptors. For instance we now under-
stand that a novel enterocyte protein, Diet1, is a regulator of 
FGF19 production at the posttranscriptional level. The Diet1 and 
Fgf15 (the mouse homologue of FGF19) appear to have overlap-
ping subcellular localization in murine enterocytes. Diet1-deficient 
mice constitutively convert cholesterol to bile acids and are resis-
tant to diet-induced hypercholesterolemia and atherosclerosis. 
Thus, Diet1 appears to be a control point for the production of 
FGF15/19 in enterocytes and a key regulator of bile acid and lipid 
homeostasis.132 New bile acid molecules have been recently syn-
thesized as specific agonists for these receptors in order to devise 
ways of regulating cholesterol homeostasis and glucose metabo-
lism, and these are now in clinical trials.133 In addition to influenc-
ing the transcriptional regulation of cholesterol 7α-hydroxylase in 
the liver, these receptors also induce transcription of IBABP, the 
ileal bile acid binding protein that is involved in the ileal uptake 
and conservation of the bile acid pool.

Defects in Bile Acid Synthesis Causing 
Metabolic Liver Disease and Syndromes  
of Fat-Soluble Vitamin Malabsorption
Defects in bile acid synthesis have profound effects on hepatic and 
gastrointestinal function and on cholesterol homeostasis, espe-
cially when the cause is a genetic mutation encoding the enzymes 
responsible for primary bile acid synthesis. Such defects lead to 
an overproduction of hepatotoxic atypical bile acids that are syn-
thesized from intermediates accumulating in the pathway proxi-
mal to the inactive enzyme and a progressive cholestasis exacerbated 
by the lack of primary bile acids that are critical for promoting 
bile flow. Marked alterations in urinary, serum, and biliary bile 
acids are found in all infants and children with liver disease, and 

iSee references 29, 57, 66, 72, 93, 95, 137, 138.

• Fig. 2-4  The relative distribution of the different bile acid synthesis 
disorders identified in urine samples from 13,500 patients with unex-
plained liver disease screened at Cincinnati Children’s Hospital Medical 
Center between 1987 and 2015. 
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from that of the CYP7A1−/− mouse knockout model, which has 
normal cholesterol levels.27

Oxysterol 7α-Hydroxylase Deficiency
The discovery of a genetic defect in CYP7B129 emphasizes the 
quantitative importance of the acidic pathway for bile acid syn-
thesis in early life. Unlike the mouse, where this enzyme appears 
to be developmentally regulated,25 or the rat, where it is induced 
when there is suppression in CYP7A1 activity,24 it appears that in 
the neonatal period of humans CYP7B1 may be more important 
than CYP7A1 for bile acid synthesis. This genetic defect presents 
as severe progressive cholestatic liver disease. It was first described 
in a 10-week-old boy of parents who were first cousins29 and 
has more recently been identified in three patients in early 
infancy.37,38,141

The index patient had severe cholestasis, cirrhosis, and liver 
synthetic failure from early infancy. He had progressive jaundice 
by 8 weeks of age, hepatosplenomegaly, and markedly elevated 
serum transaminases, but normal serum GGT. The liver biopsy 
revealed cholestasis, bridging fibrosis, extensive giant-cell transfor-
mation, and bile duct proliferation. A similar clinical picture  
and liver histology were reported for a 5-month-old Taiwanese 
infant37 and a 6-month-old Japanese infant.38 Oral UDCA therapy 
proved ineffective or led to deterioration in liver function tests  
in these patients. Oral cholic acid therapy was also ineffective in 
the index case, and that patient underwent orthotopic liver trans-
plantation at 41

2 months of age but died 3 weeks later from 
disseminated Epstein-Barr virus–related lymphoproliferative 
disease. The Taiwanese infant died at 11 months of age before 
transplantation could be performed, but the Japanese infant 
underwent living donor transplantation with a graft from the 
mother who had a compound heterozygous mutation (R112X/
R417C) in the CYP7B1 gene38 and was reportedly still alive 
2 years after transplantation. These examples highlight the severity 
of this bile acid synthetic defect. It is possible that this cause of 
idiopathic liver disease may go unrecognized due to its rapid 
downhill course in the early months of life. The therapeutic strat-
egy for patients with this defect should in the future target down-
regulation of sterol 27-hydroxylase. Recently an infant with 
CYP7B1 deficiency was reported to have worsened when given 
UDCA, consistent with previous findings, but showed clinical 
improvement when treated with oral chenodeoxycholic acid 
(CDCA) (10 to 15 mg/kg of body weight/day).141

All these cases were diagnosed by mass spectrometry. FAB-MS 
analysis of the urine from the index case revealed an absence of 
primary bile acids and in their place large concentrations of unsat-
urated monohydroxy-C24 bile acids as sulfate and glycosulfate 
conjugates.29 Gas chromatography-mass spectrometry (GC-MS) 
confirmed that these atypical bile acids were the unsaturated 
monohydroxy-bile acids, 3β-hydroxy-5-cholenoic and 3β-hydroxy-
5-cholestenoic acids, which accounted for 97% and 86%, respec-
tively, of the total serum and urinary bile acids. Additionally, 
27-hydroxycholesterol concentrations in serum and urine were 
greater than 4500 times normal and no 7α-hydroxylated sterols 
were detected.29 Similar GC-MS profiles were reported for the 
two Asian infants. The formation of 3β-hydroxy-5-cholenoic and 
3β-hydroxy-5-cholestenoic acids occurs exclusively via the acidic 
pathway, and the mass spectrometry findings definitively establish 
a CYP7B1 deficiency while illustrating how important the acidic 
pathway is for bile acid synthesis in early life. Monohydroxy-bile 
acids with the 3β-hydroxy-Δ5 structure and oxysterols are good 
ligands for FXR, which would suppress CYP7A1 preventing bile 

oxysterol 7α-hydroxylase (CYP7B1) deficiencies are of progres-
sive cholestatic liver disease. Typical biochemical abnormalities 
include elevations in serum liver enzymes, conjugated hyperbili-
rubinemia, and evidence of fat-soluble vitamin malabsorption. 
A normal γ-glutamyltranspeptidase (GGT) is highly associated 
with, although not an exclusive feature of, all of the bile acid 
synthetic defects. Serum cholesterol concentrations are generally 
normal. The early clinical history of these patients often shows 
fat-soluble vitamin malabsorption, and in some cases rickets pre-
cedes any evidence of liver dysfunction.140 These abnormalities 
are usually responsive to oral vitamin supplementation, but these 
patients eventually present later in life with hepatosplenomegaly 
and elevated serum liver enzymes. The 3β-hydroxy-Δ5-C27-steroid 
oxidoreductase deficiency is the most common of the bile acid 
synthetic defects, frequently accounting for cases of late-onset 
chronic cholestasis (Fig. 2-5).

Cholesterol 7α-Hydroxylase Deficiency
Although not presenting as cholestatic liver disease, a deficiency 
in CYP7A1 was found to be responsible for hypertriglyceridemia 
and gallstone disease in three related adults.138 This finding 
followed a screening of the CYP7A1 gene for mutations in 
patients presenting with elevated low-density lipoprotein (LDL)- 
cholesterol who were resistant to HMG-CoA reductase inhibitors. 
A 2-bp deletion (1302-1303delTT) was observed in exon 6 of  
the gene, resulting in a frameshift mutation and causing a 
Leu→Arg substitution that, when transfected into HEK 293 cells, 
led to an inactive protein product. All three patients were homo-
zygous for this mutation and had serum cholesterol concentra-
tions greater than 300 mg/dL, LDL-cholesterol greater than 
180 mg/dL, and elevated triglycerides.138 The heterozygous rela-
tives of the two patients described also had elevated cholesterol 
levels. There was no evidence for cholestasis, fibrosis, or inflam-
mation, but fatty changes in the liver were reported following 
biopsy. Fecal bile acid analysis revealed markedly reduced total 
bile acid output (6% of normal) and a high [chenodeoxycholic + 
lithocholic]/[cholic + deoxycholic] acid ratio, consistent with 
preferential synthesis of chenodeoxycholic acid via the acidic 
pathway for bile acid synthesis. This clinical phenotype differs 

• Fig. 2-5  The broad spectrum of overlapping clinical features of patients 
with bile acid synthesis disorders. 
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3β-Hydroxy-Δ5 C27-Steroid Oxidoreductase Deficiency
This is the most common of the bile acid disorders and  
involves the second step in pathway—the conversion of 
7α-hydroxycholesterol into 7α-hydroxy-4-cholesten-3-one, a 
reaction catalyzed by a microsomal 3β-hydroxy-Δ5-C27-steroid 
oxidoreductase.39 A deficiency of this sterol-specific enzyme137 
results in the accumulation of 7α-hydroxycholesterol within the 
hepatocyte. The other enzymes involved in bile acid synthesis 
catalyze the remaining transformations, including side chain oxi-
dation so that in place of the normal primary bile acids, C24-bile 
acids are synthesized retaining the 3β-hydroxy-Δ5- structure char-
acteristic of the substrate for the enzyme (Fig. 2-6). This defect 
was first described in a Saudi Arabian patient, the third infant of 
five to be affected by progressive idiopathic neonatal cholestasis; 
the two previous infants had died following a similar clinical 
history and were products of a consanguineous marriage.137 All of 
the affected infants had progressive jaundice, elevated transami-
nases, and conjugated hyperbilirubinemia, and this generalized 
clinical presentation is common to all cases thus far recognized.143-146 
Upon clinical examination, patients with a 3β-hydroxy-Δ5-C27-
steroid oxidoreductase deficiency usually present with hepato-
megaly, fat-soluble vitamin malabsorption, and mild steatorrhea. 
Pruritus is usually not a symptom. This inborn error is highly 
associated with elevated serum bilirubin and transaminases and a 
normal GGT concentration and this biochemical presentation is 
a useful clinical marker for a suspected defect. Furthermore, serum 
bile acid concentrations, if measured by enzymatic or immuno
assay methods, can be expected to be normal and seemingly 

acids being synthesized by the classic pathway. In the original case, 
molecular studies of the liver tissue confirmed the CYP7A1 gene 
to be normal but there was no measurable enzyme activity or 
mRNA.29 Furthermore, these unsaturated bile acids are extremely 
cholestatic142 and the hepatotoxicity in these patients would be 
exacerbated by the lack of primary bile acids necessary to maintain 
bile flow. Oxysterol 7α-hydroxylase is essential for protecting the 
liver from hepatotoxic and cholestatic 3β-hydroxy-Δ5 monohy-
droxy bile acids that otherwise would accumulate in the acidic 
pathway (see Fig. 2-2).

Molecular studies on liver tissue from the first patient showed 
no CYP7B1 activity or mRNA, and gene sequencing revealed a 
C to T transition mutation at position 388 in exon 5, providing 
unambiguous confirmation of the genetic defect in the oxysterol 
7α-hydroxylase.29 This patient was homozygous for this nonsense 
mutation, whereas both parents were heterozygous. When human 
embryonic 293 or Chinese hamster ovary cells were transfected 
with cDNA having the R388* mutation, there was no detectable 
CYP7B1 activity, and immunoblot analysis confirmed that the 
mutated gene encoded a truncated protein unable to catalyze 
7α-hydroxylation.29 In the Taiwanese infant a single substitution 
of C to T at position 538 of exon 3 of the CYP7B1 gene that 
caused an amino acid transition from arginine to a stop codon at 
position 112 (R112->Stop) was identified,37 whereas the Japanese 
infant had a compound heterozygous mutation (R112X/R417C) 
in exons 3 and 6 of the CYP7B1 gene.38 All patients were homo-
zygous for their respective mutations and the parents were 
heterozygous.

• Fig. 2-6  The metabolic pathway for primary bile acid synthesis from cholesterol depicting the biochemi-
cal presentation of a deficiency in 3β-hydroxy-Δ5-C27-steroid oxidoreductase (HSD3B7), which presents 
in patients as early- or late-onset chronic cholestasis. 
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illustrating the diverse nature of the genetics. In an earlier report, 
a 2-bp deletion in exon 6 accounted for the inactivity of this 
enzyme in the index case with this bile acid defect.41 In four cases, 
mutations were compound heterozygous, but most were inherited 
in homozygous form. When several of the identified mutations  
were expressed in HEK 293 cells, impaired synthesis of the  
normal protein could be demonstrated and this lacked enzyme 
activity.42

The mechanism of liver injury is considered to be by the accu-
mulation of atypical bile acids concomitant with a lack of primary 
bile acids. In animal models, 3β-hydroxy-5-cholenoic acid pro-
duces cholestasis,142 but this is not the case for 3β,7α-dihydroxy-
5-cholenoic acid, which is rapidly metabolized to chenodeoxycholic 
acid in animals. This conversion does not occur in patients lacking 
the 3β-hydroxy-Δ5-C27-steroid oxidoreductase enzyme. Studies 
using rat liver canalicular membrane vesicles have shown tauro-
3β,7α-dihydroxy-5-cholenoic acid to be markedly cholestatic.153

Oral administration of the primary bile acid, cholic acid 
(5-15 mg/kg of body weight/day), is now the therapeutic approach 
for these patients and is expected to resolve the biochemical and 
histologic abnormalities and to improve growth.134,146 Chenode-
oxycholic acid has also been effective,143,148,154,155 but this bile acid 
is more cathartic and may cause loose stools or even diarrhea in 
young infants. In some cases patients have been maintained tem-
porarily on UDCA,143,146 which is choleretic but does not inhibit 
bile acid synthesis, or a combination of UDCA and chenodeoxy-
cholic acid.155 Cholic acid, which was recently approved by the 
U.S. Food and Drug Administration (FDA) for the treatment of 
bile acid synthesis disorders, is a ligand for FXR, which down-
regulates hepatic CYP7A1 activity to limit production of hepato-
toxic 3β-hydroxy-Δ5 bile acids, while additionally providing the 
stimulus for bile flow. Concomitant with the disappearance of 
3β-hydroxy-Δ5 bile acids after initiating therapy, remarkable clini-
cal and biochemical improvements occur with a normalization of 
liver function tests and resolution of jaundice in virtually all cases 
treated.134,144 Furthermore, oral primary bile acid therapy in these 
patients avoids the need for liver transplantation, which is the only 
alternative therapy.

Δ4-3-Oxosteroid 5β-Reductase (AKR1D1) Deficiency
A deficiency of the cytosolic Δ4-3-oxosteroid 5β-reductase enzyme 
responsible for the catalytic conversion of 7α-hydroxy- and 
7α,12α-dihydroxy-4-cholesten-3-one into the corresponding 
3-oxo-5β(H) analogs was first described in monochorionic twins 
born with marked and progressive cholestasis57 (Fig. 2-7). A previ-
ous sibling born with neonatal hepatitis had died of liver failure 
following a similar clinical course. Liver function tests revealed an 
elevation in serum transaminases, marked hyperbilirubinemia, 
and coagulopathy. Unlike the 3β-hydroxy-Δ5-C27-steroid oxido-
reductase deficiency, serum GGT concentrations are generally 
elevated. Liver biopsies showed marked lobular disarray as a result 
of giant-cell and pseudoacinar transformation of hepatocytes, 
hepatocellular and canalicular bile stasis, and extrahepatic medul-
lary hematopoiesis. Electron micrographs showed small bile cana-
liculi that were slitlike in appearance, lacking the usual microvilli 
and containing variable amounts of electron-dense mate-
rial.57,144,149,156 An AKR1D1 deficiency was identified in both 
twins by urinary FAB-MS analysis, which indicated an elevated 
bile acid excretion and a predominance of bile acid conjugates 
with molecular weights consistent with unsaturated oxo-hydroxy- 
and oxo-dihydroxy-cholenoic acids. That these were 3-oxo-7α-
hydroxy-4-cholenoic and 3-oxo-7α,12α-dihydroxy-4-cholenoic 

incompatible with the extent of cholestasis. Therefore, inclusion 
of serum bile acid determination in the clinical evaluation may 
provide a further clue to this defect. Histologic examination of 
these patients’ livers shows hepatitis with the presence of giant 
cells and is consistent with cholestasis as evidenced by canalicular 
plugs, bile stasis, and inflammatory changes.137,144,146-149

As with most of the inborn errors involving the reactions 
responsible for nuclear modification, the 3β-hydroxy-Δ5-C27-
steroid oxidoreductase deficiency is progressive and familial in 
nature and is fatal if untreated. Age at onset and diagnosis is vari-
able, ranging from 3 months to the adult years. Recently it was 
diagnosed in a 24-year-old woman with cirrhosis of unknown 
etiology; remarkably, her sister and a first cousin had died of cir-
rhosis at ages 19 and 6 years, respectively, and another 32-year-old 
first cousin was also affected.150 Homozygosity mapping was used 
to identify a mutation in the HSD3B7 gene, which established 
the diagnosis of a 3β-hydroxy-Δ5-C27-steroid oxidoreductase defi-
ciency as the cause of liver failure. This was subsequently con-
firmed by FAB-MS analysis of the serum from the living 
32-year-old and deceased 24-year-old family members.150 These 
cases indicate that a bile acid synthetic defect should be considered 
in cases of late-onset chronic cholestasis.134

Diagnosis of the 3β-hydroxy-Δ5-C27-steroid oxidoreductase 
deficiency can be definitively established by FAB-MS or electro-
spray ionization mass spectrometry (EMI-MS) analysis of the 
urine,134,136 which reveals an absence of the normal glycine- and 
taurine-conjugated primary bile acids and, instead, the presence 
of the sulfate and glyco-sulfate conjugates 3β,7α-dihydroxy- and 
3β,7α,12α-trihydroxy-5-cholenoic acids (see Fig. 2-6). These 
atypical bile acids are recognized by their respective negative ions 
of m/z 469, 485, 526, and 542.134 Some differences are observed 
between FAB-MS and ESI-MS mass spectra as evident from a 
report of a 26-year-old patient with a genetically confirmed muta-
tion in the HSD3B7 gene that showed in the urine a single domi-
nant ion at m/z 462 by ESI-MS and an absence of the ions at m/z 
469, 485, 526, and 542 typically observed with FAB-MS.145 
When the same urine sample was later analyzed by FAB-MS, this 
ion was of minor intensity and the characteristic ions at m/z 469, 
485, 526, and 542 served to identify this defect (K. Setchell, 
unpublished observations). Such difference in ionization between 
these mass spectrometric techniques requires consideration to 
avoid misdiagnosis. Tetrahydroxy- and pentahydroxy-bile alcohols 
with a 3β,7α-dihydroxy-Δ5 and 3β,7α,12α-trihydroxy-Δ5 nucleus 
are also found in greatly increased amounts in urine, plasma, and 
bile.151 These bile alcohols are mainly sulfated, in contrast to the 
glucuronide conjugates of saturated bile alcohols observed in 
CTX.134,152 Although primary bile acids are not detectable in the 
urine, the bile may contain small proportions of cholic acid result-
ing from intestinal bacterial metabolism of the 3β-hydroxy-Δ5 bile 
acids during enterohepatic recycling. It is possible that this may 
facilitate bile secretion and explain the delay in onset of cholestasis 
and longer survival of these patients.

3β-Hydroxy-Δ5-C27-steroid oxidoreductase is expressed in 
fibroblasts, which means its activity can be measured in cultured 
fibroblasts using 7α-hydroxy-cholesterol as substrate. In contrast 
to healthy control subjects, patients with this defect have no 
detectable enzyme activity in fibroblasts40,136 and the parents have 
a low but measurable activity consistent with a heterozygous 
phenotype. Sequencing of the HSD3B7 gene localized to chromo-
some 16p11.2-12 has failed to find a common mutation for this 
disorder. In 16 patients, 12 different mutations were identified, 
including point mutations, small insertions, and deletions,42 
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homozygous for missense mutations (662C>T and 385C>T) and 
a third was homozygous for a single base deletion (511delT) in 
exon 5 leading to a premature stop codon. The liver biopsies of 
all three patients were characterized by giant-cell transformations, 
a common feature of many cases of inborn errors in bile acid 
synthesis.144,149 Since these early reports, additional different 
mutations have been attributed to a deficiency in AKR1D1 activ-
ity in infants.52,58,146 In a patient from Japan who met biochemical 
criteria for a deficiency in this enzyme, sequence analysis revealed 
a single silent mutation in the coding region of the gene, but 
immunoblot analysis of the liver homogenate using a monoclonal 
antibody revealed expression of the normal protein,58 thus exclud-
ing a primary genetic defect. Increased production of Δ4-3-oxo 
bile acids is not uncommon in patients with severe liver disease56 
and is a feature of immaturity in hepatic bile acid synthesis in 
infants during the first few weeks of life.55 Several infants present-
ing with neonatal hemochromatosis were reported to have a Δ4-3-
oxosteroid 5β-reductase deficiency.159 As primary bile acids are 
involved in the canalicular transport of iron, the question of 
whether the iron-storage defect may be secondary to the bile acid 
synthetic defect, or vice versa, has been raised.159 In the case of a 
suspected AKR1D1 deficiency, it is important to repeat urinalysis 
because on some occasions liver disease resolves. These atypical 
bile acids spontaneously disappear, and the findings ideally should 
be supported by confirmation of a mutation in the gene.

The liver injury in this defect is the consequence of dimin-
ished primary bile acid synthesis and the hepatotoxicity of the 
accumulated Δ4-3-oxo bile acids. The unique morphologic 
findings on electron microscopy (EM) of the liver of the first 
patients described156 suggest that maturation of the canalicular 
membrane and the transport system for bile acid secretion may 
require a threshold concentration of primary bile acids in early 

acids was confirmed after extraction, hydrolysis, and derivatiza-
tion of bile acids and GC-MS analysis.57 Small proportions of 
allo(5α-H) isomers of cholic and chenodeoxycholic acids were 
also present and there was a lack of primary bile acids. These 
atypical bile acids accounted for up to 90% of the total urinary 
bile acids. There was a high concentration of allo-chenodeoxycholic, 
allo-cholic, and Δ4-3-oxo bile acids in serum. Only traces (<2 µM) 
of bile acids were detected in bile. Studies using rat canalicular 
membrane vesicles show that Δ4-3-oxo bile acids are poor sub-
strates for the canalicular bile acid transporters,153 presumably 
because of their poor solubility or low affinity for canalicular 
transporters. The presence of appreciable levels of allo-bile acids, 
normally minor metabolites, is explained by the accumulated 
substrates exceeding the Km and Vmax for the hepatic steroid 
5α-reductase in the absence of AKR1D1 activity. Interestingly, 
steroid hormone studies of one patient with a 662C>T missense 
mutation in AKR1D1 deficiency found an almost total absence 
of 5β-reduced steroid hormone metabolites and a dominance of 
5α-reduced metabolites, yet the patient had no obvious endocrine 
abnormalities.157

Δ4-3-Oxosteroid 5β-reductase is not expressed in fibroblasts, 
but further evidence for a primary enzyme defect was established 
by immunoblot analysis of the cytosolic fraction from the liver 
using a monoclonal antibody raised against the rat AKR1D1. This 
monoclonal antibody recognized the 38KDa protein in the liver 
from patients with liver disease from other causes, but not from 
the patients with AKR1D1 deficiency. The cDNA for human 
Δ4-3-oxosteroid 5β-reductase gene (SRD5B, AKR1D1) was 
reported,158 and studies of three patients with high levels of Δ4-3-
oxo bile acids in urine and low or absent primary bile acids 
revealed three different mutations in this gene consistent with a 
primary enzyme defect in each case.59 Two patients were 

• Fig. 2-7  The metabolic pathway for primary bile acid synthesis from cholesterol depicting the biochemi-
cal presentation in patients with liver disease caused by a deficiency of Δ4-3-oxosteroid 5b-reductase 
(AKR1D1). 
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oxidation161 and that chenodeoxycholic acid synthesis was affected 
to a greater extent than cholic acid synthesis. Conclusive evidence 
that the primary defect in CTX is a defect in sterol 27 hydroxylase 
(Fig. 2-8) comes from molecular studies, facilitated by the cloning 
of the human sterol 27-hydroxylase cDNA.65 The gene is localized 
to the long arm of chromosome 2, and a large number of different 
mutations have been identified in CTX patients, including inser-
tion, deletion, and point mutations.66 Interestingly, the mitochon-
drial sterol 27-hydroxylase also catalyzes hepatic 25-hydroxylation 
of vitamin D, yet despite this, 25-hydroxy-vitamin D is not 
usually altered in CTX patients.

A striking feature is the accumulation of 5α-cholestan-3β-ol 
(cholestanol) in the nervous system and the markedly elevated 
concentrations of this sterol, but not cholesterol, in plasma.66,168 
The cholestanol/cholesterol ratio in plasma may be of diagnostic 
value,169 although an elevation of this ratio and increased urinary 
excretion of bile alcohol glucuronides are often seen in patients 
with cholestatic liver diseases.170,171 The most plausible expla
nation for the high cholestanol levels is that it arises from  
sterol intermediates that accumulate in the absence of an active 
sterol 27-hydroxylase. A pathway has been proposed involving 
7α-hydroxylation of cholesterol, and conversion to 7α-hydroxy-
4-cholesten-3-one, followed by 7α-dehydroxylation that is hepatic 
rather than intestinal, and yields cholest-4,6-dien-3-one as an 
intermediate. Radiolabeling studies confirmed this pathway, and 
CTX patients have elevated plasma 7α-hydroxy-4-cholesten-3-
one and cholest-4,6-dien-3-one levels.66 Furthermore, cholestyr-
amine administration, which increases cholesterol 7α-hydroxylase 
activity, leads to increased plasma cholestanol concentrations, 
whereas chenodeoxycholic acid administration has the opposite 
effect.

Diagnosis of CTX at an early age is important to limit neuro-
logic and cardiovascular complications resulting from the chronic 
and irreversible deposition of cholesterol and cholestanol in 
tissues. Diagnosis is generally based on a greatly increased plasma 
cholestanol/cholesterol ratio,169 although in some cases this is not 
entirely reliable, and/or an elevated excretion of bile alcohols in 
urine.134,152 These analyses are highly specialized, time-consuming, 

development. Primary bile acid therapy resulted in a normaliza-
tion of the immature-appearing bile canalicular structures with a 
disappearance of the electron-dense material seen under EM in 
and around the canaliculi.

Treatment with oral cholic acid (5-15 mg/kg of body weight/
day) in most patients has resulted in clinical and biochemical 
improvement, resolution of jaundice, and normalization of liver 
function tests, provided that therapy was initiated before signifi-
cant liver damage occurred.146,156 UDCA was reported to be not 
effective160 or was used in combination with cholic or chenode-
oxycholic acids in some patients.146,160 Down-regulation in bile 
acid synthesis can be monitored by measurement of the concen-
trations of the Δ4-3-oxo bile acids in urine, and dose can be 
titrated based on biochemical and clinical responses.134 In a few 
patients cholic acid has failed to reverse the liver injury, but this 
was generally because diagnosis was established when there was 
cirrhosis and end-stage disease.

Defects Involving Reactions Leading  
to Side Chain Modification
Defects in the reactions involved in side chain hydroxylation and 
oxidation generally present as neurologic disturbances and/or syn-
dromes of fat-soluble vitamin malabsorption. These manifesta-
tions emphasize the crucial role that bile acids play in the intestinal 
absorption of lipids. Liver disease is generally mild and may not 
necessarily be the primary clinical presentation, because low levels 
of primary bile acids are often made via alternative pathways of 
synthesis. CTX was the first defect in bile acid synthesis to be 
described66,161 and shown conclusively to be due to mutations in 
the gene for sterol 27-hydroxylase (CYP271A). More recently, 
defects in bile acid conjugation and specific single enzyme defects 
in peroxisomal β-oxidation have been described. Generalized dis-
orders in peroxisomal structure and function, distinct from single-
enzyme defects in the fatty acid oxidation system, ultimately lead 
to progressive liver disease, but this is secondary to the underlying 
genetic disease.

Sterol 27-Hydroxylase Deficiency:  
Cerebrotendinous Xanthomatosis
CTX is a rare, autosomal recessive lipid-storage disease that has an 
estimated prevalence of 1 : 70,000. Although CTX is usually not 
diagnosed until the second or third decade of life when patients 
become symptomatic, it has been detected in a few pediatric 
patients.162,163 The clinical presentation includes symptoms of pro-
gressive neurologic dysfunction, dementia, ataxia, cataracts, and 
xanthomas in the brain and tendons.164 It has been suggested that 
the presence of bilateral juvenile cataracts and a history of chronic 
diarrhea, although not specific for CTX, may represent an early 
clinical manifestation of the disease.162,163 More recently CTX has 
been associated with a transient increase in serum liver enzymes 
in several infants, suggesting that the earliest clinical picture may 
be a mild cholestasis that ultimately resolves over the first few 
months of life.165,166 In one case report CTX was associated with 
fatal cholestasis in infancy.167 The main biochemical features of 
this disease are a significantly reduced synthesis of primary bile 
acids, elevated biliary, urinary, and fecal excretion of bile alcohol 
glucuronides, a normal or low plasma cholesterol concentration 
with excessive deposition of cholesterol and cholestanol in tissues, 
and a markedly elevated plasma cholestanol concentration.

More than 2 decades ago, Salen et al. demonstrated that the 
basic defect in this disorder was an impairment in side chain 

• Fig. 2-8  The metabolic pathways for primary bile acid synthesis from 
cholesterol depicting the biochemical presentation in patients with a sterol 
27-hydroxylase deficiency (CYP27A1) causing cerebrotendinous xantho-
matosis leading to diminished primary bile acid synthesis and excessive 
production of bile alcohols. Note that cholic acid is synthesized by the 
alternative 25-hydroxylation pathway (see also Fig. 2-2). 
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that was secondary to vitamin K deficiency. The liver of this 
sibling, apparently having the same bile acid synthetic defect, was 
transplanted, and the recipient was alive 5 years later but receiving 
oral bile acid therapy.72 Dietary restriction of phytanic acid should 
be implemented in AMACR deficiency to prevent longer-term 
neurologic damage caused by the accumulation of branched-chain 
fatty acids. An AMACR knockout mouse model confirms the 
importance of phytol restriction in preventing neurologic and 
hepatic manifestations.179 Because the primary presentation in this 
infant and her deceased sibling was fat-soluble vitamin malabsorp-
tion, this discovery makes a strong case for screening for bile acid 
synthetic defects in cases of unexplained fat-soluble vitamin mal-
absorption or rickets to permit therapeutic intervention with 
primary bile acids as early as possible.

Side Chain Oxidation Defect in the 
25-Hydroxylation Pathway
Clayton et al. proposed a defect in side chain oxidation in the 
25-hydroxylation pathway for a 9-week-old infant presenting with 
familial giant-cell hepatitis and severe intrahepatic cholestasis.180 
The diagnosis was based on the findings of reduced cholic and 
chenodeoxycholic acid concentrations and elevated concentra-
tions of bile alcohol glucuronides, specifically 5β-cholestane-
3β,7α,12α,24-tetrol, 5β-cholest-24-ene-3β,7α,12α,24-tetrol, and 
5β-cholestane-3β,7α,12α,25-tetrol in serum. These bile alcohols 
are not normally found in the plasma of infants with liver disease. 
Bile alcohol glucuronides were major metabolites in the urine.180 
Although this profile resembled that of CTX patients, it was 
concluded on the basis of the liver disease, which at that time had 
not been previously described as a feature of CTX, that this rep-
resented an oxidation defect downstream of the 25-hydroxylation 
step in this minor pathway for bile acid synthesis. The implica-
tions of the findings are that the 25-hydroxylation pathway, con-
sidered of negligible importance in adults, may be important in 
infants. The patient was treated with chenodeoxycholic and cholic 
acids, which led to normalization in serum transaminases and 
suppression of bile alcohol production.

Peroxisomal Disorders
Disorders involving peroxisomal assembly and function have a 
significant impact on bile acid synthesis. This is perhaps not sur-
prising because the peroxisome packages at least 40 enzymes, 
including those required for the β-oxidation of fatty acids and bile 
acids, as well as the enzymes catalyzing bile acid conjugation. 
Most of the disorders in bile acid synthesis in peroxisomopathies 
are secondary to the primary defect of organelle dysfunction. The 
early diagnosis of a peroxisomopathy is interestingly often the 
result of the patient’s referral to a gastroenterologist for evaluation 
of abnormal liver biochemistries.

Many of the peroxisomal disorders show similarities and 
overlap in clinical and biochemical presentation. Conditions in 
which there is a generalized impairment in peroxisomal function 
exhibit abnormalities in bile acid synthesis and metabolism, and 
these patients often have significant liver disease. Pinpointing the 
exact nature of the peroxisomopathy can be challenging and 
requires a battery of tests to examine the entire β-oxidation 
pathway of bile acids and VLCFAs, complemented by immuno
blotting techniques to identify the presence and activity of other 
peroxisomal enzymes, and genetic screening to sequence the PEX 
gene exons for peroxisomal biogenesis disorders.

complex, and outside the scope of routine clinical laboratories. 
However, using mass spectrometry it is possible to rapidly and 
definitively diagnose CTX from an analysis of urine, which reveals 
the presence of increased levels of bile alcohol glucuronides.134,152 
The typical FAB-MS negative ion spectrum from a CTX patient 
reveals high levels of characteristic [M-H]− ions of bile alcohol 
glucuronides, thus permitting a diagnosis to be made. CTX can 
be further confirmed by complementing the mass spectrometry 
analysis with DNA sequencing of the CYP27A1 gene and identi-
fying the specific mutation.

CTX can be effectively treated by oral bile acid admin
istration.172-174 Chenodeoxycholic acid (750 mg/day), yet to be 
approved for CTX, and cholic acid, recently approved, both nor-
malize plasma cholestanol and lead to a concomitant decrease in 
excretion of urinary bile alcohol glucuronides consistent with 
down-regulation in endogenous CYP7A1 activity. These bio-
chemical changes are generally accompanied by an improvement 
in clinical symptoms, particularly the neurologic disturbances, 
and are most effective when initiated before onset of significant 
symptomology. Cholic and deoxycholic acids also decrease plasma 
cholestanol and cholic acid may be preferable in infants, but it 
should be stressed that ursodeoxycholic acid is ineffective.175 Bile 
acid therapy may be more effective in reducing plasma cholestanol 
in patients with CTX if combined with an HMG-CoA reductase 
inhibitor, which additionally inhibits endogenous cholesterol 
synthesis.176,177

2-Methylacyl CoA Racemase Deficiency
A deficiency in 2-methylacyl CoA racemase, or alpha-methylacyl 
CoA racemase (AMACR), was reported in a 3-week-old female 
infant presenting with mildly elevated liver enzymes and low 
serum 25-hydroxy-vitamin D and vitamin E concentrations.72 
Identification of this defect was again based on mass spectrometric 
analysis of urine and serum, complemented by molecular studies. 
Molecular analysis of the gene encoding the AMACR showed a 
missense mutation (S52P) yielding an inactive protein in this 
patient. Interestingly, the same mutation was reported in two of 
three patients with an adult-onset sensory neuropathy character-
ized by elevated serum phytanic and pristanic acids, but neither 
fat-soluble vitamin malabsorption nor liver disease appeared to 
be features.71 AMACR catalyzes the racemization of the (25R) 
diastereoisomers of THCA and DHCA to the respective (25S) 
isomers,178 and this reaction is a prerequisite for the initiation of 
peroxisomal β-oxidation of the side chain of these C27 bile acid 
intermediates. It is also responsible for the racemization of (2R)-
pristanoyl Co-A to its (2S)-diastereoisomer before peroxisomal 
β-oxidation, and this broad substrate specificity explains why 
in this genetic disease VLCFAs are normal while pristanic acid, 
a branch-chained fatty acid, is elevated. The urinary FAB-MS 
analysis yields a mass spectrum identical to that of patients  
with Zellweger syndrome; however, plasma VLCFAs and other per-
oxisomal enzyme markers are all normal. High performance liquid  
chromatography-electrospray ionization (HPLC-ESI) tandem mass 
spectrometry was used to separate the diastereoisomers of THCA 
and DHCA and to confirm the presence of exclusively (25R)-forms 
of THCA and DHCA in the patient’s serum and bile.72

This infant responded successfully to fat-soluble vitamin sup-
plementation and cholic acid therapy (15 mg/kg/day) with nor-
malization of liver function tests, and she was neurologically and 
developmentally normal at age 31

2 years. The patient’s history was 
remarkable for a previous sibling who was healthy until 51

2  
months of age but died suddenly following an intracranial bleed 
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disruption similar to that found in Zellweger patients.198 In an 
attempt to limit the severity of liver injury in a Zellweger syn-
drome patient, primary bile acids were given orally, and biochemi-
cal markers of liver function and histology improved markedly, 
most notably by a decrease in the extent of bile-duct proliferation 
and inflammation.187 Urinary and serum concentrations of cho-
lestanoic acids also decreased. A striking and sustained increase in 
growth and significant improvement in neurologic symptoms 
were also noted. Based on these observations and the successful 
treatment of patients with primary enzyme defects in bile acid 
synthesis, cholic acid therapy has now been used in a number of 
patients with peroxisomal disorders with variable outcomes.134 It 
was recently approved by the FDA for peroxisomal disorders 
where bile acid synthesis is impaired. In a study of patients with 
a variety of peroxisomopathies, including Refsum disease, neona-
tal adrenoleukodystrophy, and Zellweger syndrome, treatment 
with cholic acid (10-15 mg/kg of body weight/day) for periods 
ranging from 4.7 to 11 years had variable outcomes. Not surpris-
ingly, most treatment failures were in patients with more severe 
Zellweger syndrome. Patients with single enzyme defects in per-
oxisomal function causing abnormal bile acid synthesis showed 
greater responsiveness and may benefit from oral cholic acid 
therapy.134 Patients with the peroxisomal biogenesis defects may 
benefit as evidenced from successful treatment of a patient with 
a PEX10 defect,190 who thus far has been treated with oral cholic 
acid for more than 18 years.

Bile Acid-CoA Conjugation Defects
Hepatic conjugation in humans is extremely efficient and as a 
result negligible amounts of unconjugated bile acids (<2%) typi-
cally appear in bile under normal and most cholestatic condi-
tions,199 and even after therapeutic doses of the unconjugated bile 
acid, ursodeoxycholic acid, is administered.200 The first case of 
defect in bile acid amidation was described in 1994 in a 14-year-
old boy presenting with fat and fat-soluble vitamin malabsorp-
tion.93,92 This child was of Laotian descent and in the first 3 
months of life presented with conjugated hyperbilirubinemia, 
elevated serum transaminases, and normal GGT. Two other 
patients, a 5-year-old Saudi Arabian boy and his 8-year-old sister, 
who were products of a consanguineous marriage, were identified 
with the same bile acid defect soon after. Remarkably, the boy had 
undergone a Kasai procedure for a mistakenly diagnosed biliary 
atresia, whereas his sister was reportedly asymptomatic at time of 
diagnosis. Conjugation defects have since been identified in more 
than 10 additional patients94,95,201 with a clinical history of normal 
or mildly elevated liver function tests but with severe fat-soluble 
vitamin malabsorption and rickets. In one patient, this resulted 
in bone fracture. All had subnormal levels of vitamin E, vitamin 
K, 25-hydroxy-vitamin D, and 1,25-dihydroxy-vitamin D. The 
phenotype of the amidation defect is quite variable, with severe 
cholestasis and liver failure requiring liver transplantation in one 
patient. The clinical presentation and biochemical features of 
defective amidation closely paralleled the predicted features 
hypothesized by Hofmann and Strandvik some years earlier.202 
This conjugation defect was also reported in a number of patients 
from an Amish kindred and was associated with mutations  
in the BAAT gene encoding the bile acid-CoA:amino acid 
N-acyltransferase. In some of the cases a mutation in the TJP2 
gene encoding tight junction protein 2 was reported.94 More 
recently, the first confirmed defect associated with a mutation in 
the SLC27A5 gene encoding the bile acid CoA ligase was 

Mass spectrometry, both LSIMS (FAB-MS or ESI-MS) and 
GC-MS analysis of the urine and plasma/serum, permits accurate 
identification of abnormalities in peroxisomal β-oxidation of bile 
acids,134,181 particularly when there is evidence of progressive liver 
disease. A typical FAB-MS of the urine reveals the presence of 
unconjugated THCA, taurine-conjugated THCA, and taurine-
conjugated tetrahydroxylated cholestanoic acids. Elevated levels of 
DHCA, THCA, and a C29-dicarboxylic bile acid in biologic fluids 
are a consistent feature of patients with Zellweger syndrome, 
neonatal adrenoleukodystrophy, infantile Refsum disease and 
pseudo-Zellweger syndrome,182-187 and peroxisomal biogenesis 
disorders.188-190 Of the single enzyme defects, X-linked adrenoleu-
kodystrophy and pseudoneonatal adrenoleukodystrophy both 
show normal bile acid synthesis with no accumulation of choles-
tanoic acids. DHCA concentrations are in general much lower 
than THCA, particularly in younger patients, and this is explained 
by its preferential conversion to THCA by 12α-hydroxylation. 
The origin of a unique C29-dicarboxylic acid found in serum of 
many Zellweger syndrome patients is presumed to be from side 
chain elongation in the endoplasmic reticulum.182 Although bile 
acid synthetic rates are low in patients with Zellweger syndrome,191 
increased serum concentrations of primary bile acids are fre-
quently found and are probably a consequence of impaired hepatic 
function. Additional metabolism of THCA by microsomal 
hydroxylation in the side chain (to produce C-24 hydroxylated, 
varanic acid isomers) and in the nucleus (to produce C-1 and C-6 
tetrahydroxy-cholestanoic acids) gives rise to many tetrahydroxyl-
ated cholestanoic acids that are excreted in urine and present in 
plasma, and these are of diagnostic value.181,186,187 The urine from 
parents of patients with Zellweger syndrome, who are heterozy-
gous for this most severe form of peroxisomal defect, will have 
normal urinary bile acid excretion with negligible or no detectable 
cholestanoic acids.187 In genetic counseling of affected families, 
prenatal diagnosis is possible by specific detection of elevated 
concentrations of DHCA and THCA in amniotic fluid.192

Whereas the diagnosis of Zellweger syndrome is often straight-
forward, characterizing and differentiating patients with less 
severe phenotypes and with single enzyme defects involving per-
oxisomal enzymes is more difficult. There have been several case 
reports of presumed THCA-CoA oxidase deficiencies, and phy-
tanic and pristanic acids, when measured, have been elevated.193-196 
All patients presented with ataxia, and unlike patients with 
AMACR deficiency who share a similar biochemical profile,72 
there was no evidence for any neurologic disorder. With the more 
recent recognition of the complexity of peroxisomal biogenesis 
disorders, it is possible that some of these previously reported cases 
could have been due to mutations in PEX genes, of which there 
are 12 known.

Treatment of the peroxisomopathies is difficult because of their 
multiorgan pathophysiology and is to a large extent restricted to 
managing symptoms. Dietary restriction of VLCFAs and phytanic 
acid and administration of oleic acid have provided minimal to 
no benefit in patients with full-blown Zellweger syndrome. Clo-
fibrate, which has been shown in rats to induce peroxisomal 
proliferation, has proven to be of no therapeutic value.197 In 
general, the prognosis in most peroxisomal disorders is poor, and 
patients with Zellweger syndrome generally succumb to respira-
tory failure. The progressive liver disease that commonly develops 
in peroxisomal disorders may in part be due to increased synthesis 
and accumulation of C27-bile acids and reduced primary bile acid 
synthesis. Infusion of tauro-THCA in rats induces red-cell hemo-
lysis and produces a hepatic lesion showing mitochondrial 
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examples include ileal resection and bacterial overgrowth,119 
whereas an inborn error in ileal bile acid transport has been shown 
to cause bile acid malabsorption.203,204 Genetic defects in choles-
terol synthesis, such as Smith-Lemli-Opitz syndrome,205 also 
alter bile acid synthesis because of the reduced availability of 
cholesterol.

Increased concentrations and alterations in bile acid metabo-
lism can be found in most cholestatic liver diseases, but discerning 
whether these are primary or secondary to the liver injury is often 
difficult. Primary bile acid synthetic defects, especially those 
involving the steroid nucleus, present as progressive familial intra-
hepatic cholestasis (PFIC), and represent a distinct entity of the 
PFIC syndromes separate from those recognized to arise from 
defects in the canalicular organic anion transporter proteins.206-208 
A shared feature of Byler disease, designated PFIC type 1 (Byler 
disease), PFIC type 2 (the bile salt export pump defect), and bile 
acid synthesis disorders, is a consistently low serum GGT level, 
but differential diagnosis is possible from performing bile acid 
analysis. PFIC type 1 and 2 patients present with high serum bile 
acid concentrations; whereas primary bile acids are lacking in the 
bile acid synthetic defects. PFIC type 3 patients also have a normal 
serum GGT level but defective phospholipid secretion. Patients 
with Byler disease have severe growth failure and usually die before 
3 years of age without transplantation. For bile acid synthetic 
defects, except for the oxysterol 7α-hydroxylase deficiency,29 the 
prognosis is excellent—provided oral primary bile acid therapy is 
initiated before there is significant loss of quantitative liver func-
tion134,146 and the need for liver transplantation can be avoided. 
Cholic acid therapy (10-15 mg/kg of body weight/day) was 
recently approved for the treatment of bile acid synthetic disor-
ders. It is therefore important in the clinical evaluation of patients 
with PFIC to screen for potential defects in bile acid synthesis as 
early as possible. All of these defects can be recognized by a com-
bination of molecular and analytical studies, and bile acid and 
phospholipid analysis of bile is helpful in the differential diagno-
sis. Whereas only nine bile acid synthesis disorders have been 
described in the complex pathway for bile acid synthesis, it is 
likely that, with whole genome sequencing, mutations in the 
genes encoding the remaining eight enzymes will be revealed and 
the phenotypes described.

Bile Acids as Signaling Integrators  
of Metabolism
Earlier in this chapter, we introduced the concept of bile acids as 
signaling molecules in the context of bile acid synthesis regulation. 
Recent evidence suggests that bile acids signal to control a much 
wider spectrum of metabolic processes including satiety, energy 
expenditure, and hepatic lipogenesis.

Enterocyte Bile Acid Physiology
Bile acid reabsorption in the terminal ileum occurs in an active 
manner against its concentration gradient predominantly through 
the apical sodium bile acid transporter (ASBT).209 We understand 
that FGF15/19 is released by the ileum after bile acid stimulation 
of the intestinal FXR-FGF15/19 system.210 The Diet1 intestinal 
protein was recently highlighted to be a critical intermediary step 
in the ileal FXR-FGF signaling pathway.3 The release of FGF15/19 
from enterocytes then signals FGFR4 in the liver. FGF15/19 
action in the liver has been said to be dependent on the integrity 

reported.95 The patient, of Pakistani origin born to consanguine-
ous parents, presented with cholestasis, elevated serum bilirubin 
and transaminases, normal serum GGT concentrations and low 
fat-soluble vitamins and had been receiving total parenteral nutri-
tion. The liver biopsy showed extensive fibrosis. The patient was 
homozygous for a missense mutation C.1012C>T in the SLC27A5 
gene, and interestingly a second mutation was discovered in the 
gene encoding the bile salt export pump. No mutations were 
found in BAAT. Diagnosis of a bile acid amidation defect is readily 
achieved by mass spectrometry. FAB-MS and ESI-MS negative 
ion mass spectra of the urine, serum, and bile reveal a distinct 
profile in which there is a major ion at m/z 407 corresponding to 
unconjugated cholic acid. In addition, ions characterizing sulfate 
and glucuronide conjugates of dihydroxy- and trihydroxy-bile 
acids are usually present but those of glycine- and taurine-
conjugated bile acids are absent.93,95 Serum and urinary bile acids 
are markedly elevated in these patients and comprise predomi-
nantly cholic and deoxycholic acids. Discerning whether the 
defect resides in the bile acid CoA ligase or in the bile acid-
CoA:amino acid N-acyltransferase requires the use of molecular 
techniques to sequence the SLC27A5 and BAAT genes for muta-
tions or immunostaining of a liver biopsy for the presence of the 
enzymes, because the mass spectrometric bile acid profiles of these 
two defects are indistinguishable.

Although inborn errors in bile acid synthesis usually present 
as well-defined progressive familial cholestatic liver disease, cho-
lestasis is generally not a primary manifestation of a bile acid 
conjugation defect, presumably because synthesis of high levels of 
unconjugated cholic acid is sufficient to maintain bile flow. The 
main feature of fat-soluble vitamin malabsorption occurs because 
of reduced biliary secretion of bile acids and an inability to form 
mixed micelles because of rapid passive absorption of unconju-
gated cholic acid in the proximal small intestine. Although these 
patients conjugate bile acids with glucuronic and sulfuric acids, 
these conjugates do not promote lipid absorption. Treatment with 
oral glycocholic acid was effective in resolving the fat-soluble 
vitamin malabsorption of five patients with the amidation defect 
caused by mutations in BAAT,201 whereas UDCA therapy was 
used in the one reported patient with a mutation in the gene 
encoding the bile acid-CoA ligase.95 More recently we studied 10 
pediatric patients with fat-soluble vitamin deficiency, some with 
growth failure or transient neonatal cholestatic hepatitis, and 
found increased urinary bile acids that were predominantly 
excreted in unconjugated forms as sulfates and glucuronides. 
Glycine or taurine conjugates were absent in the urine, bile, and 
serum of these patients. Thus, the biochemical profile was consis-
tent with defective bile acid amidation, and molecular analysis of 
BAAT confirmed four different homozygous mutations in eight 
patients tested.92 The recognition that genetic defects in bile acid 
synthesis are associated with unexplained fat-soluble vitamin mal-
absorption warrants a concerted effort to explore patients with 
this phenotype for defective bile acid synthesis.

Other Disorders Influencing Bile  
Acid Synthesis and Metabolism
In conditions that alter the integrity of the enterohepatic circula-
tion, significant changes in bile acid synthesis and metabolism will 
occur. Because serum bile acid concentrations reflect a balance 
between intestinal input and hepatic extraction, it is evident that 
pathophysiologic changes to the intestinal tract will be reflected 
by secondary changes in bile acid synthesis and metabolism. Such 
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such as glucagon-like peptide-1.227-229 Bile acid reabsorption in the 
terminal ileum occurs in an active manner against a concentration 
gradient,230 predominantly through active transport involving the 
ASBT.209 Increased villi length and total surface area in addition 
to the greater ASBT-stained area have been observed after bariatric 
surgery and potentially explain the elevated serum levels of bile 
acids. This intestinal adaptive response is similar in many experi-
mental bariatric and nonsurgical murine cohorts that have been 
shown to have higher serum bile acid levels.210,224-226,231 Increased 
bile acid absorption coupled with the suppression of hepatocyte 
bile acid uptake transport mechanisms (Oatp/Ntcp) as we have 
observed210 may together explain the elevated serum bile acid 
levels.

Rats that underwent bile diversion lost significantly more 
weight than rats that had sham surgeries. Further, bile-diverted 
rats had improved glucose tolerance, less liver steatosis, and a 
higher postprandial glucagon-like peptide-1 response, in addition 
to higher serum bile acids. The taurine-conjugated form of serum 
bile acid ursodeoxycholic acid (TUDCA) was specifically higher 
in the bile-diverted rats. Interestingly in a separate experiment we 
observed that bile acid gavage of TUDCA or UDCA in diet-
induced obese rats reduced hepatic steatosis and endoplasmic 
reticulum stress. Using a murine model of VSG, we further 
reported that serum bile composition in the VSG-treated obese 
mice had increased cholic and TUDCA levels. These composi-
tional changes in bile acids in VSG mice explained observed 
down-regulation of hepatic lipogenic and bile acid synthesis 
genes. We further reported that increases in serum bile acids in 
post-VSG mice correlate with postsurgery weight loss and that 
changes in serum bile composition could explain suppression of 
hepatic genes responsible for lipogenesis.210 Specifically, perform-
ing VSG on mice lacking the nuclear receptor FXR, or NR1H4, 
we demonstrated that the therapeutic value of VSG does not 
result from mechanical restriction imposed by a smaller stomach. 
Rather, in the absence of FXR, the ability of VSG to reduce body 
weight and improve glucose tolerance is substantially reduced. 
VSG was also seen to be associated with changes to gut microbial 
communities.232

Bile Acid Signaling as a Treatment for 
Nonalcoholic Steatohepatitis
Recently, direct hepatic FXR activation has been shown to sup-
press lipogenesis through SREBP1c233 and the bile acid produc-
tion enzymes Cyp8b1 and Cyp7a.214 We have also shown that 
steatosis improvement after bariatric surgery involves suppressed 
hepatic lipogenesis.210 Further, FXR activation using 6-ethyl-
chenodeoxycholic acid (obeticholic acid) has also been shown to 
protect against body weight gain and liver lipid accumulation in 
obese rats.234 More recently a large clinical trial reported a signifi-
cant improvement in nonalcoholic steatohepatitis when patients 
were treated with OCA, but there were also disproportionate lipid 
abnormalities in OCA- compared with placebo-treated patients.235 
Patients that received OCA had increased levels of plasma LDL–
cholesterol and decreased levels of plasma high density lipoprotein– 
cholesterol. In a separate set of experiments we investigated a down-
stream target of FXR implicated in hepatic lipogenesis and bile 
acid production: the small heterodimer partner (SHP) pathway. 
We found that diet-induced obese mice genetically modified to 
overexpress SHP in the liver (SHP-Tg mice) lost weight after VSG 
and had decreased steatosis. On the other hand, diet-induced 
obese mice lacking SHP (SHP-knockout mice) had weight loss 

of the receptor FGFR4 and its obligatory co-receptor βKlotho.211 
FGF15 directly inhibits Cyp7a1 through its liver receptor  
FGFR4 independent of the liver FXR-SHP pathway.212,213 Further, 
the intestinal FXR-FGF pathway suppresses both Cyp7a1 and 
Cyp8b1 hepatic gene expression.214 It is now understood that the 
intestinal FXR-FGF-FGFR4-mediated inhibition of bile acid syn-
thesis impacts both Cyp7a1 (7α-hydroxylation) and Cyp8b1 
(12α-hydroxylation) equally. FGF15 signaling also works subse-
quent to insulin as a postprandial inhibitor of hepatic gluconeo-
genesis through the inactivation of the transcription factor cAMP 
regulatory element-binding protein215 and lipogenesis through 
Srebp1c.216 A decrease in fasting FGF15/19 levels has been shown 
to be associated with the development of nonalcoholic fatty liver 
disease in obese adolescents217 and more recently improvement 
in obesity has been ascribed in part to an increase in gut 
gluconeogenesis.218

Muscle and Brown Adipose Tissue Metabolism
Circulating bile acids bind to TGR5, a plasma membrane-bound 
G protein-coupled receptor that is present in distal small intestine, 
colon, pancreas, skeletal muscle, and brown adipose tissue.77 The 
activation of this receptor TGR5 leads to a secretion of the incre-
tin hormone glucagon-like peptide-1 from enterocytes,1 which 
may influence insulin secretion from the pancreatic β cells.219 
Activation of the TGR5 receptor in skeletal muscle and brown 
adipose tissue also mediates the conversion of thyroxine to triio-
dothyronine, which could increase energy expenditure.220 We have 
also reported that skeletal muscle gene expression of bile acid 
responsive targets, Kir6.2 and cyclooxygenase IV, are increased 
after bariatric surgery.221

Bile Acid Changes After Bariatric Surgery
Many of the weight-loss or bariatric surgeries have been reported 
to result in increased levels of serum bile acids. Patti et al. reported 
elevated serum bile acid levels after bariatric surgery, wherein the 
bile acid subfractions taurochenodeoxycholic, taurodeoxycholic, 
glycocholic, glycochenodeoxycholic, and glycodeoxycholic acids 
were all significantly higher in the Roux-en-Y gastric bypass sub-
jects compared with overweight and morbidly obese weight-
matched control subjects.222 Nakatani et al. also showed that 
restrictive procedures (9 of this group of 15 patients had vertical 
sleeve gastrectomy [VSG]) resulted in increased total serum bile 
acid levels as the subjects lost weight.223 We have subsequently 
shown that this increase in serum bile acid levels is not ubiquitous 
to all bariatric procedures. Roux-en-Y gastric bypass results in an 
increase in serum bile acids, but we did not find a similar increase 
in individuals who lost weight after undergoing a gastric banding 
procedure.221 These human data in conjunction with our in vivo 
experimental work with rat ileal interposition224 and bile diversion 
surgeries225 present compelling data that the bile acid enterohe-
patic circulation is important to the improvements in metabolism 
seen after bariatric procedures.

Why certain bariatric procedures increase serum bile acid levels 
is an open question. Multiple potential pathways involved in the 
rise of serum bile acids levels after VSG surgery include (1) ghrelin 
activation and its link to bile acid production,226 (2) changes in 
intestinal pH after VSG that would impact bile acid reabsorption, 
(3) changes in the microbiome influencing bile acid circulation, 
(4) enhanced gastric emptying rates that shorten bile acid transit, 
and (5) bile acid-triggered distal gut anorexic hormone release 
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transport influence normal physiology. Impaired bile acid synthe-
sis and transport leads to a broad spectrum of symptoms ranging 
from cholestasis, fat and fat-soluble vitamin malabsorption, to 
neuropathy consistent with the physiologic and physicochemical 
properties of bile acids. There is now a renaissance in interest 
in bile acids given the recognition that they regulate numer-
ous biochemical pathways associated with energy, glucose, and 
fat metabolism. Consequently, novel drugs based on the bile 
acid backbone are likely to be developed to address the global 
problems of obesity and diabetes and the liver disease associated  
with them.
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independent of SHP status. In contrast, SHP-knockout mice that 
underwent VSG lost weight but developed hepatic inflammation 
and had increased liver injury.236 Together these data demonstrate 
the ability of alterations in bile acids to recapitulate important 
metabolic improvements seen after bariatric surgery (Fig. 2-9). 
Furthermore, the intestinal microbiome is increasingly recognized 
to play an important role in disease and in obesity-related condi-
tions, and not surprisingly, alterations in bile acid metabolism 
will be induced by changes in bacterial metabolism. The interplay 
between bacteria and bile acids is likely to be shown to be key to 
explaining some of the findings we have discussed.

Conclusion
This chapter describes the complex pathway for bile acid synthe-
sis from cholesterol and illustrates how genetic defects in genes 
encoding the enzymes responsible for bile acid synthesis or their 

• Fig. 2-9  Bile acid (BA) enterohepatic circulation as a metabolic signaling integrator. ASBT, apical sodium 
bile acid transporter; BAT, brown adipose tissue; FGF19, fibroblast growth factor-19; FGFR4, fibroblast 
growth factor-19 receptor; FXR, farnesoid X receptor; βKlotho, FGFR4 co-receptor; SHP, short heterodi-
mer partner; TGR5, G protein–coupled receptor. 
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